Thermos $=$ heat \quad dynamic $=$ motion.
heat change in physical and chemical processes is studies in thermodynamics

$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta H=+v e$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	

\Rightarrow We study about various form of energy.

$$
\begin{aligned}
& \Longrightarrow \text { Heat } \quad \Longrightarrow \text { Work } \\
& \Longrightarrow \text { internal energy } \Longrightarrow \text { enthalpy. } \\
& \Rightarrow \text { Gibbs free energy } \Longrightarrow \text { Helmholtz free energy. }
\end{aligned}
$$

\Longrightarrow feasibility - Whether the process proceed or not.
\Longrightarrow spontaneous - which takes place on it's own withount any external force.

Ex. Expansion of gas from high pressure to low pressure
\Rightarrow efficiency of heat engine $\underset{\text { energy }}{\longrightarrow \text { heat converted to Work }} \begin{aligned} & \text { energy }\end{aligned}$
\# Drawbacks
$\Delta H=t v e$ stronger bond going to
\rightarrow Rate of reaction - x
\rightarrow mechanism - x stronger bonds going to form - exothermic reaction $=\Delta H=-v e$.
\# Terms used in thermodynamics
\Rightarrow systern - part of universe which is under thermodynamic observation \Rightarrow surrounding - other than system, remaining part is called surrounding.

$$
\text { syr }+ \text { surrounding }=\text { universe. }
$$

it max rect or
imaginary.
\# Systems types - depending upon nature of boundary.
\rightarrow open system
\rightarrow closed system
\rightarrow isolated system
open system

Heat exchange. 7
Matter exchange $\}$ open system.

Ex-boiling of mater in open beaker.

Closed system.

$\left.\begin{array}{l}\text { Heat exchange } \sim \\ \text { Matter exchange } x\end{array}\right\}$ closed system

Ex-boiling of water in closed vessel.

Isolated system

$\left.\begin{array}{ll}\text { Heat exchange } & x \\ \text { Matter exchange } & x\end{array}\right\}$ isolated system.

Ex -boiling of water in insulated flask.
\# state of system: - The system is said to be in a particular state.
if all it's properties not changing with time.

state initial final.

* Thermodynamic properties

\Longrightarrow length, mass \Rightarrow conc. ,
oreo volume, internal!

Extensive properties: E/U -internal energy
m-mass $\quad H$-enthalpy
l - length
A - Area
C-heat capacity C-heat capacity.
h-amount of substance
r-volume
F-force.

Intensive properties

- concentration
- density

$$
\begin{aligned}
& c=m / v \\
& p=m / v \\
& p=\frac{F}{A}
\end{aligned}
$$

- pressure
- temperature.
- B.P, M. P, Freezing point.
- pH (depend upon conc.).
- electrode potential (depends upon conc.)
\Longrightarrow Extensive properties are said to be additive.
Example $1 \mathrm{md}, \quad U=10$ unit.
$2 \mathrm{mcl}, \quad L=10 \times 2=20$ unit.
\Rightarrow If a properties are expressed per molle, per unit area, per gram, per unit area are intensive properties.

Example $\mathbb{C}_{g}=\frac{C}{m}$. specific heat capacity
$C_{n}=\frac{c}{n}$ - molar heat capacity molar internal energy
Examples 2 mole, $U=10$ unit $\quad 10 / 2=5$ unit
10 mole, $U=50$ unit. $50 / 10=5$ unit

B Path function and state function.
path function - change in properties depends on path followed.
$\left.\left\{\begin{array}{l}\text { Heat \& work are } \\ \text { two path function }\end{array}\right\} \begin{array}{cl}\text { Example } \\ \text { process }\end{array} \quad \begin{array}{l}A \longrightarrow D . \\ \text { path-I }\end{array} \begin{array}{l}A \longrightarrow C \longrightarrow D . \Delta \\ \text { path }-I \longrightarrow\end{array} \begin{array}{l}A \longrightarrow B \longrightarrow \Delta\end{array}\right\}$ give different changes in energy

State function - change in properties depends only on initial a final state whatever may be the patton followed by the Example E/U system.

H
S
G
A
T
p
\# Work \& heat. Work:

ordered form of energy 1

P system $>P_{\text {surrounding }} \Longrightarrow$ Expansion take place.
\Longrightarrow Work done by the system on surrounding
$\Rightarrow W=-v e$
\Rightarrow system energy (E / U) decreases.
Poster < Prurrounding \Longrightarrow compression
\Longrightarrow mark done on the system by the surrounding

$$
\Longrightarrow v_{1}=+v e
$$

\Rightarrow systems energy (E / U) increases.

$$
W=-P \Delta V
$$

\Rightarrow Expansion $\quad \Delta V=+v e \quad \therefore M=-v e \quad U \downarrow \quad W$ done by system
\Rightarrow compression $\Delta V=-v e \quad \therefore H=+v e \quad U T H$ done on system.

Heat
disordered form of energy.

energy exchange depend upon temp difference.

Toys $>T_{\text {surrounding }} \Longrightarrow$ heat is evolved by the system

$$
\Longrightarrow \quad q=-x e .
$$

\Longrightarrow gi stem internal energy decrease. E/U \downarrow

Toys \& Tsurrounding. \Rightarrow heat is absorbed by the system

$$
\Rightarrow \quad q=+ \text { we }
$$

\Rightarrow system's internal energy increases. E/U \uparrow
\# Internal energy - sum of all forms of energy: at the syojem.

$$
U=R \cdot E+V \cdot E+T \cdot E+K \cdot E+P \cdot E+\frac{E \cdot E+\cdots . .}{\square}+\text { electronic energy. }
$$

$\left\{\begin{array}{l}\text { All thermodynamic properties exact value of these are not } \\ \text { possible to calculate experimentally but change in them can } \\ \text { be calculated. }\end{array}\right\}$
Minable to calculate $\begin{cases}U & x \\ H & x \\ G & x \\ A & x \\ S & x\end{cases}$

Change in Energy
unable to calculate exact values $\quad \begin{cases}G & x \\ A & x \\ S & x\end{cases}$

change may be
calculated experimentally.
$\Delta S \quad \sim$
\# ΔU - change in heat content during a process at constant volume.

$$
q_{x}=\Delta v
$$ closed system.

$$
\begin{array}{cc}
\frac{\text { closed }}{\text { system }} \\
(V=\text { constant }) . & \begin{array}{l}
\text { system } \\
U_{1}=105 \\
U_{2}
\end{array} \\
& \Delta V=155 \\
V=\text { constant } \\
W=0
\end{array}
$$

$\Longrightarrow R \longrightarrow P+$ heat (q) [Exothermic]

$$
\Delta \phi=-v e \quad q=-v e
$$

$\Longrightarrow R+$ heat $\longrightarrow P$ Endothermic] $\Delta U=f v e$
\Rightarrow Extensive property.
\Longrightarrow state function.
\# Enthalpy, H: heat content of system at constant pressure.

$$
\begin{aligned}
& \quad q_{p}=\Delta H \\
& H=U+p V
\end{aligned}
$$

$$
\Delta H=\Delta U+P \Delta U
$$

$$
q_{p}=q_{v}+p \Delta v \quad \quad q_{p}=q_{v}-k_{1}
$$

\# ΔH - change in heat content during a process at constant pressure.

constant:
$R \xrightarrow{\text { pressure }} p+$ heat
[Exothermic]

$$
\Delta H=-v e \text {. }
$$

$R+$ heat $\xrightarrow[\text { pressure }]{\text { constant }} P$
[endothermic]

$$
\Delta H=\text { tie. }
$$

$4+4$
$\left\{\begin{array}{l}\Delta U, \text { internal energy change occurs only in the form of heat } \\ \text { wherease, } \triangle H H \text {, enthalpy change occurs in the form of heat as } \\ \text { well as work }\end{array}\right\}$
\# heat capacity amount of heat require the to raise the temperature of a substance by $1^{\circ} \mathrm{C}$.

$$
\begin{array}{rlrl}
25^{\circ} \mathrm{C} \longrightarrow 26^{\circ} \mathrm{C}, & q & =\mathrm{C} \\
25^{\circ} \mathrm{C} \longrightarrow 27^{\circ} \mathrm{C} & q & =2 \mathrm{C} \\
t_{1}{ }^{\circ} \mathrm{C} \longrightarrow t_{2}{ }^{\circ} \mathrm{C} & q & =\left(t_{2}-t_{1}\right) \mathrm{C} . \\
& q & =\mathbb{C} \Delta T \\
c=\frac{q}{\Delta T} & & \Longrightarrow \text { unit: J} / \mathrm{K}, \mathrm{cal} / \mathrm{K} . \\
& \Longrightarrow \text { extensive property }
\end{array}
$$

\# Cs /s - q require to rise the temp. of 1 gram of substance by $1^{\circ} \mathrm{C}$. is called specific heat capacity

$$
\xrightarrow[\text { Substance }]{\text { I gram }}\left\{\begin{array}{lll}
25^{\circ} \mathrm{C} \longrightarrow 26^{\circ} \mathrm{C} & q=C_{5} & \because q=5 \\
25^{\circ} \mathrm{C} \longrightarrow 28^{\circ} \mathrm{C} & q=3 C_{5} & q=35 \\
t^{\circ} \mathrm{C} \longrightarrow t_{2}{ }^{\circ} \mathrm{C} & q=\left(t_{2}-t_{1}\right) C_{5} & q=\left(t_{2}-t_{1}\right) \mathrm{S} \\
& q=C_{5} \Delta t & q=S \Delta T
\end{array}\right.
$$

$$
\underset{\text { capacity }}{\text { specific heat }} \longrightarrow s=\frac{9}{\Delta T}
$$

$$
\begin{aligned}
& t_{1} c \longrightarrow t_{2} c \quad q-<\omega_{1} \\
& t_{1}{ }^{\circ} \mathrm{c} \longrightarrow t_{2}^{\circ} \mathrm{c} \quad q=m S \Delta T \\
& S=\frac{q}{m \Delta T} \Longrightarrow \text { unit: } J K^{=1} \text { gram }^{-1} \quad: \text { call. } K^{-1} \text {. } \text { gram }^{-1}\left\{\begin{array}{l}
m \text {-mass of } \\
\text { substance } \\
\text { in grams. }
\end{array}\right.
\end{aligned}
$$

m gram.
\Longrightarrow intensive property T
\# Molar heat capacity at constant volume $\left[C_{V} / \mathbb{C}_{V}, m\right] \Rightarrow$ intensive property. volume constant

$$
\Delta T=0 \quad 1 \mathrm{~mol} \text { substance } \xrightarrow{\text { constant }^{\prime} V^{\prime \prime}} \text { substance }
$$

$q=-\left\{\begin{array}{l}q \text { required to raise the temp. of } 1 \text { mole } \\ \text { of substance by } 1{ }^{\circ} \mathrm{C} \text { at constant volume. } \\ \text { is called molar heat capacity } C_{v}, m\end{array}\right]$

$$
\begin{gathered}
\begin{array}{c}
\text { lased } \\
\text { vessel } \\
1 \text { mole }
\end{array}
\end{gathered} \longrightarrow \Delta V=0
$$

$$
c=\frac{q}{\Delta T}
$$

At constant volume $q_{x}=\Delta U$

$$
\begin{aligned}
C_{V} & =\frac{\Delta U}{\Delta T} \\
\Delta U & =C_{V} \Delta T
\end{aligned}
$$

for one mole of substance. at constant ' V '
2 mole $\Delta L=2 C_{V} \Delta T$
12 mole $\Delta U=L I C_{V} \Delta T$
n mole $\Delta u=n C_{v} \Delta T$
for " n " mole of substance at constant volume..
\# $C_{p} / C_{p, m}$ - molar heat capacity at constant pressure:
pressure $=$ constant

($P=$ constant)

for n mole

$$
\begin{aligned}
& t_{1}{ }^{\circ} \mathrm{C} \longrightarrow t_{2}^{0}{ }^{\circ} \mathrm{C} \\
& \Delta H=n C_{p} \Delta T
\end{aligned}
$$

$$
c=\frac{q}{\Delta T}
$$

At constant

$$
\begin{aligned}
& p, \quad q_{p}=\Delta H \\
& C_{P}=\frac{\Delta H}{\Delta T}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow q_{v}=\Delta w \\
& \rightarrow q_{p}=\Delta H \\
& \rightarrow W=-p \Delta v \\
& \rightarrow \mathbb{C}=\frac{q}{\Delta T}
\end{aligned}
$$

$$
\begin{array}{rl}
C_{p}-C_{x}=R & R \\
& =\text { gas constant } \\
& =8.314{\mathrm{~J} \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}^{C_{p}>C_{V}}
\end{array}
$$

$\left\{\begin{array}{l}\text { heat require to rise temp. of open system if t constant pressure is } \\ \text { more than heat require to rise temp. of closed system at } \\ \text { constant volume }\end{array}\right\}$

$$
\begin{array}{l|l}
\rightarrow C_{s} / s=\frac{q}{m \Delta T} & C_{p}-C_{V}=R \\
\rightarrow C_{V}=\frac{q_{V}}{n \Delta T}=\frac{\Delta U}{n \Delta T} & A U+P \Delta V-A U=R \\
\rightarrow C_{p}=\frac{q_{p}}{n \Delta T}=\frac{\Delta H}{n \Delta T} &
\end{array}
$$

$$
-\left\{\begin{array}{l}
\text { Work dome by } 1 \text { mole of ideal gus at } \\
\text { constant pressure is called gas constant }
\end{array}\right\}
$$

$$
\rightarrow \Delta H=n C_{p} \Delta \Gamma
$$

$$
\rightarrow C_{p}-C_{r}=R \quad \rightarrow C_{p}>C_{r}
$$

\# Thermodynamic process
process

$$
\left\{\begin{array}{l}
\Delta \text { - finite change } \\
d \text {-infinitesimally change } / \text { small } \\
\text { change. }
\end{array}\right\}
$$

1) isothermal process : constant temp.

$q \neq 0$
$\Delta T=0$
$\Delta u=0$
$\triangle T F d T=0$

Example \Rightarrow isothermal $\frac{\text { expansion of gas }}{\perp} \quad q \neq 0$.
some energy \Rightarrow required for expansion.

energy
surrounding.

expansion doesn't used
internal energy
because

$$
\Delta U=\Delta C_{V} \Delta T
$$

$\Delta U \propto \Delta T$
if ΔU is used

$$
\Delta T \neq 0 .
$$

temp. \neq constant
$\therefore q=+v e \quad \because$ heat is absorbed by the system from the surround ing.
\Longrightarrow Isothermal compression of a gas - some energy is released some energy is released.
remains in the system

if remains in system

remain no longer as isothermal change
leaves the system f goes to surrounding. \downarrow
$\Delta U=0 \quad$ remains constant $\Delta T=0$ - become isothermal
\therefore energy released goes to surrounding.
\# Adiabatic process - No exchange of heat between system and surrounding.

$$
\begin{gathered}
q=0 \\
\Delta T \neq 0 . \\
\Delta U \neq 0 .
\end{gathered}
$$

doesnot follow this path
to internal energy or remains in system.

if energy released in system \downarrow
internal energy \uparrow

gas is scare to be heated.
\# isobaric process.

$$
\begin{aligned}
& P=\text { constant } \\
& \Delta P / d P=0
\end{aligned}
$$

$$
P_{1}=10^{\circ} \mathrm{atm} \quad P_{2}=10 \mathrm{~atm}
$$

\# isochoric process

$$
Y=\text { constant } \quad \Delta V / d V=0
$$

\# Cyclic process: initial \& final state are same.
\oint-indicated cyclic process.

$\left\{\begin{array}{c}\text { only heat \& work energy can changes } \\ \text { betwureen systern \& surrounding }\end{array}\right\}$

Que-1 When freezing of a liquid takes in a system.

1) mar have $q>0$ or $q<0$
2)

a >0
Freezing
liquid \longrightarrow solid.
3)

$$
q<0
$$

4) $q=0$.
stronger bonds are going to form.
Ans:- $q<0$

Que-2 A sample of liquid is thermally insulated continuously stirred for 2 hrs by the mechanical linkage to a motor in surrounding for this process
(a) W<0, $q=0, \quad \Delta U=0 \quad \longrightarrow$ thermally insulated system.
(b) $w>0, \quad q>0, \quad \Delta \mathrm{~J}>0$

$$
q=0
$$

(c) $W<0, q>0, \Delta U=0 \longrightarrow$ continuous stirring
(d) $w>0, \quad q=0, \Delta u>0$.
\rightarrow |alack is done on the system.

$$
W=+v e \quad W>0
$$

Ans: for thermally insulated system, $q=0$
due to mechanical stirring, temp. $\uparrow \therefore$ internal energy also $\uparrow \Delta U>0$ work is on the system by motor $\because \quad W=+v e \quad w>0$.
\Longrightarrow option- 4 is the correct answer.
Que -3 The heat capacity of 10 moles of an ideal gas at certain temp. is $300 \mathrm{~J} / \mathrm{k}$ at constant pressure. The heat capacity of the same gas at the same temp and at constant volume would be.

1) $383 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
2) $217 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
3) $134 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
4) $466 \mathrm{~J} \cdot \mathrm{~K}^{-1}$

$$
\begin{aligned}
10 \mathrm{~mol} & \therefore c_{p}=300 \mathrm{~J} \cdot \mathrm{~K}^{-1} \\
1 \mathrm{~mol} & c_{p}=30 \mathrm{~J} \cdot \mathrm{~K}^{-1} \\
c_{p}-c_{r} & =R \quad 1 \mathrm{~mol} \\
300-c_{v} & =8.3 \times 10 \quad \text { for } 10 \mathrm{~mol} . \\
c_{v} & =300-83
\end{aligned}
$$

$$
C_{V}=2175 \cdot \mathrm{~K}^{-1}
$$

$$
C_{p, m}-C_{x, m}=R \text { for } 1 \text { mole }
$$

$$
C_{p, m}-C_{v, m}=n R \quad \text { for } n \text { mole }
$$

Que- 4 Among the following the system that could require the least amount of thermal energy to bring it's temp to $80^{\circ} \mathrm{C}$ is
i) 200 gm of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$
ii) $100 \mathrm{gm} \quad 20^{\circ} \mathrm{C}$
iii) $150 \mathrm{gm} \quad 50^{\circ} \mathrm{C}$

$$
C_{\text {water }}=1 \mathrm{ca}
$$

i") $300 \mathrm{gm} 30^{\circ} \mathrm{C}$.
$\Rightarrow \quad q=m s \Delta t$

$$
\begin{array}{ll}
\text { i) } q=200 \times 1 \times 40=8000 \text { cal } & \text { iv }\rangle q=300 \times 1 \times 50=15000 \mathrm{cal} . \\
\text { ii) } q=100 \times 1 \times 60=6000 \text { cal } & \text { Ans : }- \text { iii }\rangle 150 \text { grams of water } \\
\text { iii) } q=150 \times 1 \times 30=4500 \text { cal } & \text { at } 50^{\circ} \mathrm{C} .
\end{array}
$$

Que-5 Find the amount of korkdone in L. atm on the the surrounding when 1 L of ideal gas initially at pressure of 10 atm , is allowed to expand at constant temperature to 10 L by.
(a) reducing external pressure to 1 teth. in single step.
(b) reducing external pressure first to 5 atm and then to 1 atm
(c) Allowing the gas to expand to an evacuated space so that it's
\rightarrow isothermal process
constant-Temp $\quad \Delta T=0 \quad \Delta U=0 . \quad q \neq 0$.
\longrightarrow adiabatic process
constant $=q$
$\Delta T \neq 0$
$\Delta U \neq 0 \quad q=0$.
) \# Reversible processes \rightarrow occur very very slowly
\longrightarrow difference beth driving \& opposing force is very very small
\longrightarrow infinite number of steps.
\longrightarrow difference beth internal \& external pressure is very very 5 mall if one sand particle is removed $P_{\text {ex }}=9.9 y$. then
particle

$$
\text { Paint } \longrightarrow \text { toward } 9.99 \text { by expanding. }
$$

\longrightarrow system is said to at equilibrium at every step.
\rightarrow ideal/refersence process
Workdone in isothermal reversible process

\int - sum of all step faking place.
for ideal gus

$$
\begin{aligned}
& P V=n R T \\
& P=\frac{n R T}{V}
\end{aligned}
$$

$$
\begin{aligned}
& k 1=-\int_{V_{1}}^{V_{V}} \frac{n R T}{d v} d v \\
& \omega=-h R T \int_{v_{1}}^{v_{2}} \frac{d v}{v} \\
& W=-n R T \ln \frac{\overline{V_{2}}}{V_{1}} \\
& \left\{\begin{aligned}
\int \frac{1}{x} \cdot d x & =\ln x \\
\int_{x_{1}} \frac{d x}{x} & =\ln x_{2}-\ln x_{1} \\
& =\ln \frac{x_{2}}{x_{1}}
\end{aligned}\right\} \\
& W=-2.303 n R T \log \frac{V_{2}}{V_{1}} \quad\{\because \ln x=2.303 \log x\} \\
& \Longrightarrow \text { For I mole of Ideal gas. }
\end{aligned}
$$

 At constant temperature, 'T', afc Boyle's la ur.

$$
\begin{aligned}
& \quad P \propto \frac{1}{V} \\
& \quad \frac{r_{2}}{r_{1}}=\frac{P_{1}}{P_{2}} \\
& K=-2.303 n R T \log \frac{P_{1}}{P_{2}} \quad \text { for " } n \text { " mole of gas. }
\end{aligned}
$$

Irreversible process - very fastly

- difference between driving \& opposing force is vert large.
- difference between Pinternal \& Pexterned is very large such

$$
\text { if }\left\{\begin{array}{c}
P=0 \\
W=0
\end{array}\right\}
$$

Example: Naturally occuring process \& are spontaneous. flow of water: Uphill \longrightarrow downfield
Expansion of gas : High Pressure \longrightarrow low pressure
How of current :
that Pintermal become negligitib.

Isothermal preversinte processes takes plane in two vary -
(i) \rightarrow isothermal irreversible free expansion:

$$
\therefore P_{\text {ex }}=0 \text {. }
$$

: Expansion again vacuum/ expansion in evacuated vessel.

$$
\therefore W=0=-P \Delta V
$$

$\binom{i}{i} \longrightarrow$ isothermal irreversible intermediate expansion.

- expansion against constant external pressure Pex or constant atmosphere pressure. Pox.
$\therefore \quad k=-P \Delta V$.

$$
\left\{\begin{array}{l}
\text { This indicates that work } \\
\text { is a path function and } \\
\text { not a state function. }
\end{array}\right\}
$$

$$
T=\text { constant }
$$

$$
P=\text { constant }
$$

$$
\begin{aligned}
\because W & =-\int_{V_{1}}^{V_{2}} P d V \\
& =-P \int_{V_{1}}^{V_{2}} d v \quad\left\{\int_{x_{2}} d x=x\right. \\
& =-p\left(v_{2}-v_{1}\right) \quad\left\{\int_{x_{1}} d x=x_{2}-x_{1}\right. \\
W & =-p \Delta V
\end{aligned}
$$

$\rightarrow\left\{\begin{array}{l}\text { workdone in reversible process is more compared to } \\ \text { workdone in irreversible process since opposing pressure (per) } \\ \text { is more in reversible process. }\end{array}\right\}$ is more in reversible process.

$\longrightarrow\left\{\begin{array}{l}\text { workdone obtained in reversible process is } \\ \text { called maximum work. }\end{array}\right.$

Note: Relation between pressure \& volume for an adiabatic process

$$
\begin{aligned}
& P V^{Y}=\text { constant where } \gamma=\frac{C_{p}}{C_{V}} \text { : } \frac{\text { beat capacity }}{\text { ratio }} \\
& \frac{P_{1}}{P_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{Y}
\end{aligned}
$$

relation between $T \& V$. for adiabatic process.

$$
\begin{gathered}
T V^{\gamma-1}=\text { constant } \\
\frac{T_{1}}{T_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{Y-1}
\end{gathered}
$$

relation between $T \& P$ for adiabatic process

$$
\begin{aligned}
& \frac{1-Y}{T P^{\gamma}}=\text { constant } \\
& \frac{T_{1}}{T_{2}}=\left(\frac{P_{2}}{P_{1}}\right) \frac{1-\gamma}{Y}
\end{aligned}
$$

$$
\begin{aligned}
& Y \equiv \frac{C_{p}}{C_{V}}= \text { heat capacity } \\
& \text { ratio. } \\
& Y=\frac{C_{p}}{C_{x}}=\frac{f+2}{f}
\end{aligned}
$$

f-degrees of freedom.
monoatomic gus $f=3$
diatomic collinear molecule $\left(\mathrm{CO}_{2}\right)$

$$
f=5
$$

fri \& polyatomic molecules
\# calculation of Workdone by graphical method.
\longrightarrow for adiabatic process

$$
\begin{aligned}
P y^{Y} & =\text { constant } \\
T V^{Y=1} & =\text { constant } \\
T P^{\frac{1-\gamma}{Y}} & =\text { constant. }
\end{aligned}
$$

$$
W=-\int_{v_{1}}^{v_{2}} p d v
$$

$$
w=-v e
$$

$$
\begin{aligned}
\text { Workedone } & =- \text { shaded area } \\
& =-\left(v_{2}-V_{1}\right)(p-0) \\
& =P \Delta V \quad, V
\end{aligned}
$$

\rightarrow isothermal reversible process

$$
\begin{aligned}
& M=-2.303 n R T \log \frac{V_{2}}{V_{1}} \\
& W=-2.303 n R T \log \frac{P_{1}}{P_{2}} \\
& \text { irreversible process } \\
& H=-P \Delta V
\end{aligned}
$$

$$
\begin{aligned}
\text { Workdone } & =- \text { shaded area. } \\
& =-(P-0)\left(V_{2}-V_{*}\right) \\
& =-P(-\Delta V) \\
& =+P \Delta V \quad \because V_{2}>V_{1}
\end{aligned}
$$

Work of compression, $H_{\text {compre }}=+v_{e}(\because \Delta U \uparrow)$

$$
\frac{k=+v e}{d}
$$

work of expansion, Wexparsion $=-v e(\because \Delta u \downarrow)$
volume increase, $1 \downarrow$ expansion.

$$
\begin{aligned}
\text { Workdone } & =W_{A \rightarrow B}+W_{B \rightarrow C .} \\
& =0+W_{B-C} \\
& =W_{B-C .} \quad\left\{\begin{array}{c}
\left.\because\right|_{A} \rightarrow B \\
\text { because volume }=\text { conto } \\
\Delta V=0
\end{array}\right.
\end{aligned}
$$

cyclic process.

$$
k=-v e
$$

- expansion
$|k|=+v e$
- compression.

Net work done $H=-v e$.

$$
W=\text { Area of curve }=l \times b \text {. }
$$

cyclic process

Isobaric process

$$
P=\text { constant }
$$

isochoric process p volume $=$ constant

isothermal process

$$
P \propto \frac{1}{V}
$$

$$
P Y \equiv \text { constant. }
$$

- carried out in open ar closed syoten

Isothermal Adiabatic process. $=\quad P V^{Y}=$ constant

$$
P \propto \frac{1}{v^{\gamma}} \quad[\gamma>1]
$$

- carried out in thermally T_{T} insulated system.

$$
q=M C_{S} \Delta T \quad C_{S}=\frac{q}{\Delta T}
$$

for 1 mole of sample (molar mass $=$

$$
\Phi=\Delta U=\frac{M}{m} \times \varepsilon_{v} \Delta T
$$

$\because V=$ constant

$$
q=4 u
$$

combustion - exotherimic.

$$
\Delta u=-v e
$$

$$
\Delta U=\frac{M}{m} C_{V} \Delta T
$$

ΔT - rise in temperature.
C_{V} - Heat capacity of substance at constant volume.
\# Dettomination of ΔH

$$
\begin{aligned}
& \Delta H=\Delta U+P \Delta V . \\
& \Delta H=\Delta U+R T \Delta n_{g} .
\end{aligned}
$$

$$
\left\{\begin{aligned}
\because P V & =n R T \\
P \Delta V & =R T \Delta n
\end{aligned}\right\} \text {. for gaseous reaction }
$$

i) condidering the react ${ }^{\text {h }}$ involving solid/riquid.
$A D \sim$. $\sin c e \Delta V$-negleable for solind/g liquid.

$$
\Delta H \approx \Delta U
$$

ii) considering reaction involving gases. considerable change in vol. take place.

$$
\Delta H=\Delta u+\Delta n \cdot R T
$$

Example

$$
\begin{gathered}
\mathrm{PCl}_{5(g)} \longrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(g) \\
\Delta \mathrm{ng}_{\mathrm{g}}= \\
\therefore \Delta H=\Delta U+R T .
\end{gathered}
$$

Bomb calorimeter - Enthalpy of combustion of gas.

$$
\begin{aligned}
& \left\{\begin{array}{ll}
Q=n_{\text {bomb }} \underset{\text { bomb }}{\Delta T}+n_{\mathrm{H}_{2} \mathrm{O}}^{C_{\mathrm{H}_{2} \mathrm{O}} \Delta T} \\
Q=m_{\text {bomb }} S_{\text {lamb }} \Delta T+m_{\mathrm{H}_{2} \mathrm{O}} S_{\mathrm{H}_{2} \mathrm{O}} \Delta T
\end{array}\right\} \begin{array}{l}
Q=C \Delta T
\end{array} \\
& q_{v}=\Delta U=n C_{V} \Delta T=\frac{M}{M} C_{V} \Delta T
\end{aligned}
$$

\# Zeroth law of thermodynamic. - If two systems are in thermal equilibrium with third one seperately then all the systems are said to be under thermal equilibrium.

- it introduce the concept of temperature.
mechanical equaling l tart $25^{\circ} \mathrm{C}$

thermal equilibrium.
equilibrium at constant temperature.

15) law of thermodynamics. - law of conservation of energy.
create energy x
destroy energy x
Energy one form \longrightarrow another form.
$\%$ conservation ape r^{5} l law $=100 \%$ energy conservention
\rightarrow Energy of universe remain constant.
\rightarrow Energy of isolated system remains constant.

$$
100 \mathrm{~J} \longrightarrow 100 \mathrm{~J}
$$

ane form another form

$$
\% \text { conversion }=100 \%
$$

\rightarrow mathematical expression.
change in internal energy
occurs in two may.
\therefore heat \&

: work
i) by absorption/ evolution of heat
ii) work done by the system/ on the system.

$$
\begin{aligned}
& \Delta u=q+\omega 1 \\
& \Delta u=q-p \Delta v \\
& d u=d q+d \omega \\
& d u=d q-p d v
\end{aligned}
$$

_ for finite changes
for infinitesimally small changes
\# Application of 1° lam to various process.

$$
T=\text { constant }
$$

$$
\Delta T / d T=0
$$

$$
\because \quad \Delta U \propto \Delta T
$$

$$
\Delta u=q+k w
$$

$$
\left.\begin{array}{l}
\rightarrow \left\lvert\, x=-2.303 n R T \log \frac{\cdots}{p_{2}}\right. \\
\rightarrow|x|=-2.303 n R T \log \frac{V_{2}}{V_{1}} \\
\rightarrow|x|=-p \Delta V . \\
\longrightarrow P V^{\gamma}=\text { constant } \\
\longrightarrow T V^{Y-1}=\text { constant } \\
\longrightarrow p^{\frac{1-y}{\gamma}}=\text { constant }
\end{array}\right\} \begin{aligned}
& \text { acliabatic } \\
& \rightarrow q_{v}=\Delta U=\frac{M}{m} C_{x} \Delta T
\end{aligned}
$$

$$
\therefore \Delta U=0=n C_{V} \Delta \mathbb{T} \quad \longrightarrow \quad T^{\frac{1-y}{\gamma}}=\text { constant } \quad \int
$$

From $1^{\text {st }}$ law.

$$
q=-k \mid \quad \underline{q}=0 \quad\{\because \because \Delta N=0\}
$$

CMorkdone by the system = heat absorbed by the system. $-1 \times N=9$ kuorkdone on the system = heat evolved by the system $\mid \omega=-q]$
\rightarrow isothermal free expansion.

$$
\rightarrow q=\Delta U=\frac{M}{m} C_{r} \Delta T
$$

$$
\Delta T / d T=0 \quad \longrightarrow \Delta H=\Delta U+R T \cdot \Delta n g
$$

$$
\Delta U=0
$$

$$
P_{e x}=0
$$

$$
q=k=\Delta U=\Delta H=0
$$

$$
\begin{aligned}
& \therefore \quad \Delta U=\eta C_{V} \Delta T=0 . \\
& \Delta H=1+C_{p} \Delta T=0 . \\
& k=-P \Delta V=0 \quad(\because \text { Pex }=0) . \\
& \Delta U=q+k \\
& 0=q+0 \\
& \therefore q=0
\end{aligned}
$$

\longrightarrow adiabatic process

$$
\begin{aligned}
q & =0 . \\
4 u & =q+M \\
\Delta U & =0+M \\
\therefore \Delta U & =-W=\text { or } \quad-\Delta U=-4
\end{aligned}
$$

$\Delta U=$ ill : widrkdone on the system = int intermallenergt
$-\Delta U=-k$: Horkence the system $=$ internal energy
\longrightarrow Adiabatic free expansion.

$$
\begin{aligned}
& q=0 \\
& \omega=0 . \quad\left(\because p_{\text {ex }}=0\right) . \\
& \Delta U=q+M \\
& \Delta U=0 \\
& \Delta H=\Delta U+P \Delta V \\
& \Delta H=0 \text { to } \\
& \Delta H=0
\end{aligned}
$$

isochoric process.
V-constant $\quad \Delta V=0$.

$$
R U=q_{v}
$$

$$
\Delta U=q+m=q-P \Delta V
$$

_ First law.
$\therefore \Delta U=9_{x}$ heat content of system at constant volume
\longrightarrow isobaric process

$$
\begin{aligned}
& \text { P-constant } \\
& \Delta H=\Delta U+P \Delta V \quad \text { af constant pressure. } \\
& \Delta U=q+k \quad \text { pst law } \\
& Q=\Delta U-k L . \\
& q=\Delta U+P \Delta V .
\end{aligned}
$$

$$
q_{p}=\Delta H
$$

heal content of system att constantpressure
limitation of 1 st law of thermodynamic.
\rightarrow feasibility of process is not explained

heat transfer $A \longrightarrow B$
but in practice $B \longrightarrow A$ is not possible

The direction in which heat transfer takes place is not explained.

It doesn't contradicts The existance of 100% efficiency heat engine.
but In practice this is not prossible

Low temp \longrightarrow high temp. refrigerator.
$\left.\begin{array}{l}\text { In practice } \\ \text { ac to } 1^{\text {st }} \text { law }\end{array}\right\}$ to construct self acting refrigerator.

Que-1 In a bomb calorimeter, the combustion of 0.5 grams of compound A (Molar mass $=50$ gram/mole) increased the temp. by 4 K . The heat capacity of calorimeter is $2.5 \mathrm{~kJ} . \mathrm{K}^{-1}$, the molar internal energy of combustion is.

1. 1000
2. -1000
3. 20
$4=-20$.
$\Longrightarrow \quad m=0.5 \mathrm{gram} \quad C_{V}=2.5 \mathrm{~kJ} \cdot \mathrm{~K}^{-1}=2500 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
$M=50$ gram.

$$
\begin{aligned}
\Delta U & =-\frac{M}{m} c \Delta \pi & \Delta U=n C_{4} \Delta T \\
& =-\frac{50}{0.5} \times 2.5 \times 4 & \Delta U=\frac{m}{m} C_{*} \Delta T \\
& =-100 \times 2.5 \times 4 & \\
& =-100 \times 10 & \\
& =-1000 . \mathrm{kJ.mol}^{-1} &
\end{aligned}
$$

Que-2 Work (W) involved in isothermal reversible expansion from V_{i} to V_{f} of n moles of an ideal gas is.

$$
\begin{aligned}
i) & \longrightarrow \text { isothermal reversible condition } \\
W_{\text {max }} & =-n R T \ln \left(\frac{V_{i}}{V_{f}}\right) \quad n \ln \left(\frac{V_{f}}{V_{i}^{\prime}}\right)
\end{aligned}
$$

$$
\text { ii) } \left\lvert\, k=-n R T \ln \left(\frac{V_{F}}{V_{i}}\right)\right.
$$

$$
\text { iii) } N_{1}=-\operatorname{nRr}\left(V_{f} / v_{i}\right)
$$

\therefore option (iii) is the correct

$$
\therefore \text { option iii is the correct }
$$

answer.

$$
\text { iv) } \omega=n R T \log \left(V_{F} / v_{i}\right) \text {. }
$$

Que. 3 Further reaction $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, the value of $\triangle H-\triangle L$ in kJ at 300 K and 1 bar is

1. -5.0
2. 00
3. 2.5
4. $5 \cdot 0$.
$\Delta H=\Delta U+R T \Delta A_{g}$
$\Delta n_{g}=2-4=-2$

at $300 \mathrm{~K} / 29 \mathrm{~K} \quad R T=2.5 \mathrm{~kJ}$.

$$
\left\{\begin{aligned}
\text { if temp } T & =300 \mathrm{k} / 298 \mathrm{k} \\
R T & =2.5 \mathrm{~kJ}
\end{aligned}\right\}
$$

$$
\begin{aligned}
\Delta H-\Delta U & =\Delta A_{g} \cdot R T \\
& =-2 \times 2.5=-5 \mathrm{~kJ}
\end{aligned}
$$

Que-4 The value of $\Delta U-\Delta H$ further reaction. $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}_{(\mathrm{s})} \longrightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{Co}_{(\mathrm{s}) \mathrm{C}}$

$$
\text { 1. } \quad-3 R T
$$

2. $+3 R T$
3. $+R T$
4. $-R T$

$$
\begin{array}{cc}
\Delta H=\Delta U+R T \cdot(\Delta n g) \\
\Delta U-\Delta H=-R T \cdot \Delta n_{g} \\
\Delta n_{g}=3 & \therefore \Delta U-\Delta H=-3 R T .
\end{array}
$$

option 1 is the correct answers.

Que-5 moles of ideal gas at $27^{\circ} \mathrm{C}$ expands isothermally \& reversibly from a volume of $6 \mathrm{~L} \longrightarrow 60 \mathrm{~L}$. workdone in calories is \Longrightarrow isothermal reversible expansion.

$$
\begin{aligned}
k_{1} & =-2.303 n R T \log \frac{V_{1}}{V_{i}}=-2.303 \times 5 \times 2 \times 300 \times \log \left(\frac{60}{6}\right) \\
& =-2.303 \times 3000 \times 1 \quad\left(\because \log \frac{60}{6}=\log 10=1\right) \\
& =-2303 \times 3 \\
& =-6999 \mathrm{cal} .
\end{aligned}
$$

Que-6 Calculate the maximum workdone for expanding 16 gm of gas at 300 K and occuping volume of $5 \mathrm{dm}^{-3}$ until the volume become $50 \mathrm{dm}^{-3}$ \Longrightarrow isothermal rexersible expansion - maximum work is obtained

$$
\begin{aligned}
W_{\max } & =-2.303 n R T \log \left(\frac{V_{f}}{V_{i}}\right) \\
& =-2.303 \times \frac{16}{32} \times 2 \times 300 \times \log \left(\frac{50}{5}\right) \\
& =-2.303 \times 0.5 \times 600 \times 1 \\
& =-690 \mathrm{cal} .
\end{aligned}
$$

Que-7 During expansion of gas the absorbed heat is 800 cal and the decreases in internal energy 400 cal then calculate the work

$$
\begin{aligned}
q & =+800 \mathrm{cal} \\
\Delta U & =-400 \mathrm{cal} \\
k & =?
\end{aligned}
$$

$$
\Delta u=q+|x|
$$

$$
\therefore k^{\prime}=\Delta U-q=-400-800
$$

$=-1200 \mathrm{ccel}$. (-xe value indicates work-done by the system)

Que. 8 If an electric motor produced 15 kJ of energy each second has mechanical work \& lost 2 kJ as heat to the surrounding then the change in internal energy each second.
$\Longrightarrow \quad W=-15 \mathrm{~kJ}$. work is done by the system $\mathrm{k}=\frac{-v e}{\text { value }}$
By the system

$$
q=-2 k J
$$

$\begin{aligned} k & =-v e \| \\ q & =-v e\end{aligned}$
On the system.

$$
\begin{aligned}
\Delta U & =9+\mathrm{kJ} \\
& =-15-2 \\
& =-17 \mathrm{~kJ} .
\end{aligned}
$$

Que. 9 : Calculate $9, W, \Delta L, \Delta H$ (in Joule) for the reversible isothermal expansion of one mole of ideal gas at $27^{\circ} \mathrm{C}$ from volume of $10 \mathrm{dm}^{3} \longrightarrow 20 \mathrm{dm}^{-3}$.

$$
\begin{aligned}
n & =1 \mathrm{~mol} . \\
T & =27^{\circ} \mathrm{c}=300 \mathrm{~K} . \\
V_{1} & =10 \mathrm{dm}^{-3} \\
V_{2} & =20 \mathrm{dm}^{-3} \\
H_{\text {max }}= & -2.303 \mathrm{nRT} \log \left(\frac{V_{f}}{V_{i}}\right) \\
= & -2.303 \times 1 \times 8.3 \times 300 \times 10 \mathrm{~g} 2 \\
= & -2.303 \times 1 \times 8.3 \times 300 \times 0.8010 \\
= & -0.693 \times 8.3 \times 300 \\
H_{\text {mare }}= & -1725.57 \mathrm{~J}
\end{aligned}
$$

$$
A / c \text { of lave } \quad \Delta w=9+14 \quad q=+1725.57 .5
$$

$$
\text { but } \Delta u=0 \quad \because \quad W=-9 \text {. }
$$

Que-g The figure below represents the path followed by a gas during expansion from $A \longrightarrow B$, the workdone in litre. atm is.

$$
\begin{aligned}
\Longrightarrow \quad H_{A-B} & =H_{A-I}+H_{E-B} . \\
& =0+\text { shaded area }(l \times b) \\
& =(5-1)(1-0) \\
& =4 \times 1 \\
& =4
\end{aligned}
$$

Que-10 The workdone by an ideal gas around the cycle. ABCA is

Net work tone $=$ Area of triangle.
$=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times\left(3 v_{1}-v_{1}\right)\left(4 p_{1}-p_{1}\right)$
$=1 / 2 \times 2 x_{1} \times 3 P_{1}$
$=3 p_{1} v_{1}$

Que -11 During expansion of an ideal gas for a given volume change, the change in pressure in adiabatic process $\left(\Delta P_{\text {ad }}\right)$ is _ that of isothermal process ($\Delta P_{\text {isothermal }}$)

1) equal to
2) exactly half
3) smaller than
4) larger than
\Longrightarrow For isothermal process For addiatatic process

$$
\begin{aligned}
& P \propto \frac{1}{x} \\
& \therefore \Delta P_{a d}>\Delta P_{\text {isothermal }} .
\end{aligned}
$$

option (4) is the correct answer.
isothermal: T-constant
expansion : $w=-\mathrm{PdV}$
\longrightarrow reversible process involves infinite number of steps and in every step -PdV work is done by an ideal gas during isothermal expansion. \longrightarrow the total workdone during isothermal reversible expansion process is equal to summation or collection of -PdV work done by the system in every step.

$$
\begin{aligned}
& \therefore \int d x=-\int_{x_{1}}^{v_{2}} p d v . \\
& W_{\text {max }}=-\int_{X_{1}}^{V_{2}} \frac{n R T}{V} \cdot d V \quad(\because P V=n R T, \text { for ideal gas }) \\
& W_{\text {max }}=-n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V} \quad\left(\begin{array}{l}
\left(\begin{array}{l}
\text { for isothermal process } T \\
\\
\text { also constant. })
\end{array}\right.
\end{array}\right. \\
& k_{\max }=-n R T \int_{v_{1}}^{v_{2}} d(\ln v) \quad\left(\because \frac{d x}{x}=d(\ln x)\right. \\
& W_{\max }=-n R T[\ln V]_{V_{1}}^{v_{2}} \\
& W_{\text {max }}=-n R T\left(\ln V_{2}-\ln v_{1}\right) \\
& W_{\text {max }}=-\operatorname{RRT} \cdot \ln \left(\frac{V_{2}}{V_{1}}\right) \quad\left(\because \ln x-\ln y=\ln \frac{x}{y}\right) \\
& W_{\text {max }}=-2.303 n R T \cdot \log \left(\frac{v_{2}}{v_{1}}\right) \quad(\because \ln x=-2.303 \log x
\end{aligned}
$$

The workdone by the system during isothermal reversible expansion of an ideal gas is maximum than
the irreversible isothermal expansion of an icleal gas
\# Morkdone in adiabatic reversible expansion of an ideal gas \# adiabatic process: $q=0$
: there is no heat exchange b/w spstem and surrounding.
reversible process: involves infinite number of steps expansion: work is done by the system for adiabatic process

$$
\begin{aligned}
& q=0 . \\
& \text { AlG to } 1^{\text {st }} \text { low } \\
& \Delta U=q+w . \\
& \therefore \Delta U=W \text { al } \theta(q=0 \text { for adiabatic process }) \\
& \text { or } \quad-w=-\Delta U .
\end{aligned}
$$

but

$$
\begin{align*}
& U=f(T, V) . \\
& d U=\left(\frac{d U}{d T}\right)_{V} \cdot d T+\left(\frac{d U}{d T} .\right. \\
& d U=\left(\frac{d U}{d T}\right)_{V} \cdot d T+\left(\frac{d U}{d V}\right)_{T} \cdot d V . \\
& d U=C_{V} \cdot d T+0 \quad\left(\because\left(\frac{d U}{d v}\right)_{T}=0\right. \text { because for this } \\
& \text { term } T=\text { constant } \tag{2}\\
& \therefore d U=C_{V} \cdot d T .
\end{align*}
$$

integrating equation (2) on both side within particular limit

$$
\begin{aligned}
& \int_{U_{1}}^{U_{2}} d U=C_{V} \int_{T_{1}}^{T_{2}} d t \\
& U_{2}-U_{1}=C_{v} \cdot\left(T_{2}-T_{1}\right)
\end{aligned}
$$

$$
\Delta U=C_{V} \Delta T
$$

-(3) (for one mole of an ideal
for 'n' mole ot an ideal gas

$$
\Delta U=M=n C_{V} \Delta T
$$

this is expression for workdone in. adiabatic reversible expansion of an ideal gas.
\# Relationship between T, P and V for adiabatic reversible expansion of an ideal gas. \#
(a) relation between pressure and volume. for adiabatic reversible expansion of an ideal gas

$$
\begin{aligned}
d U=C_{V} \cdot d T & =M=-P d V \\
\therefore \quad C_{V} \cdot d T & =-P d V \\
C_{V} \cdot d T & =-n R T\left(\frac{d V}{V}\right) \quad\left\{\begin{array}{r}
\because P V=n R T+P=\frac{n R T}{x} \\
\quad \text { for an ideal gas }
\end{array}\right\} \\
\therefore \quad C_{V} \cdot d T & =-n R T \cdot d(\ln V) \quad 1\left(\because \frac{d x}{x}=d(\ln x)\right.
\end{aligned}
$$

but for ' n ' mole of an ideal gas, we hare

$$
\begin{equation*}
P V=n R T \tag{2}
\end{equation*}
$$

differentiating equation (2) on both side.

$$
\begin{aligned}
& P d V+V d P=n R \cdot d T \\
& \therefore d T=\frac{P}{n R} \cdot d V+\frac{V}{n R} \cdot d P . \\
& \therefore d T=\frac{n R T}{A R V} \cdot d V+\frac{A R T}{A R P} \cdot d P \quad\left\{\because P=\frac{n R T}{V} \& V=\frac{n R T}{P}\right\} \\
& \therefore d T=T \cdot\left(\frac{d V}{V}\right)+T \cdot\left(\frac{d P}{P}\right) \\
& \therefore \\
& \therefore d T=T \cdot d(\ln V)+T \cdot d(\ln P)-(3)\left\{\because \frac{d x}{x}=d \cdot(\ln x)\right.
\end{aligned}
$$

putting value of equation (3) in equation (1)

$$
\begin{align*}
& C_{v} \cdot\{T \cdot d(\ln V)+T \cdot d(\ln P)\}=-n R T \cdot d(\ln V) \cdot \\
& \therefore C_{V} \cdot T \cdot d(\ln V)+C_{V} \cdot T \cdot d(\ln P)=-n R T \cdot d(\ln V) \\
& \therefore C V \cdot T \cdot d(\ln P)=-C_{r} \cdot T \cdot d(\ln V)-n R T \cdot d(\ln V) \\
& C_{v} \cdot f \cdot d(\ln P)=-\left(C_{x}+n R\right) \not \subset \cdot d(\ln v) \\
& C_{v} \cdot d(\ln p)=-C_{p} \cdot d(\ln v) \quad\left\{\because C_{v}+n R=C_{p}\right\} \\
& d(\ln P)=-\frac{c_{p}}{c_{v}} \cdot d(\ln V) \\
& d(\ln P)=-\gamma \cdot d(\ln V) \\
& \text { (4) }\left\{\because \frac{c_{p}}{c_{v}}=\gamma\right. \text {-heat capacity } \tag{4}\\
& \text { ratio }
\end{align*}
$$

Integrating equation (4) on both side within
particular limit.

$$
\begin{aligned}
& \int_{p_{1}}^{p_{2}} d(\ln p)=-\gamma \int_{v_{1}}^{v_{2}} d(\ln v) \\
& \ln P_{2}-\ln P_{1}=-Y\left(\ln V_{2}-\ln V_{1}\right) \\
& \ln \left(\frac{P_{2}}{P_{1}}\right)=-\zeta \cdot \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \left\{\because \ln x-\ln y=\ln \left(\frac{x}{y}\right)\right\} \\
& \ln \left(\frac{p_{2}}{p_{1}}\right)=\gamma \cdot \ln \left(\frac{v_{1}}{v_{2}}\right) \quad\left\{\because-\ln \left(\frac{x}{y}\right)=+\ln \left(\frac{y}{x}\right)\right. \\
& \ln \left(\frac{p_{2}}{p_{1}}\right)=\ln \left(\frac{v_{1}}{v_{2}}\right)^{y} \quad\left\{\because x \cdot \ln m=\ln m^{x}\right\} \\
& \frac{P_{2}}{P_{1}}=\left(\frac{v_{1}}{y_{2}}\right)^{\rho} \\
& \text { or } \\
& P_{1} v_{1}^{\rho}=P_{2} v_{2}^{\gamma}
\end{aligned}
$$

expansion of an ideal gas, the workdone is given by.

$$
\begin{align*}
& d u=d v=C_{v} \cdot d T \\
& c_{v} \cdot d T=-n R T \cdot d(\ln v)=-n R T\left(\frac{d v}{v}\right)=-n R T \cdot d(\ln v) \tag{1}\\
& \frac{c_{v}}{n R}\left(\frac{d T}{T}\right)=-d(\ln v) \\
& \frac{c_{v}}{n R} \cdot d(\ln T)=-d(\ln v) \quad\left\{\because \frac{d x}{x}=d(\ln x)\right\} \\
& d(\ln T)=-\frac{n R}{c_{v}} \cdot d(\ln v) \quad\left\{\because n R=c_{p}-c_{v}\right\} \\
& d(\ln T)=-\frac{\left(c_{p}-c_{v}\right)}{c_{v}} \cdot d(\ln v) \\
& d(\ln T)=\frac{c_{v}-c_{p}}{c_{v}} \cdot d(\ln v) \quad\{(\ln T) \\
&=\left(\frac{c_{v}}{c_{v}}-\frac{c_{p}}{c_{v}}\right) \cdot d(\ln v) \\
& d(\ln T)=(1-\gamma) \cdot d(\ln v)-
\end{align*}
$$

Integrating equation (2) on both side.

$$
\begin{aligned}
& \int_{T_{1}}^{T_{2}} d(\ln T)=(1-\gamma) \int_{V_{1}}^{V_{2}} d(\ln V) \\
& \ln T_{2}-\ln T_{1}=(1-\gamma)\left(\ln V_{2}-\ln V_{1}\right) \\
& \ln \left(\frac{T_{2}}{T_{1}}\right)=(1-\gamma) \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \left\{\because \ln x-\ln y=\ln \left(\frac{x}{y}\right)\right\} \\
& \ln \left(\frac{T_{2}}{T_{1}}\right)=\ln \left(\frac{V_{2}}{V_{1}}\right)^{1-r} . \\
& \therefore \frac{T_{2}}{T_{1}}=\left(\frac{V_{2}}{V_{1}}\right)^{1-\zeta} \\
& T_{1} V_{2}^{Y-Y}=T_{2} \cdot Y_{1}^{Y-1}
\end{aligned}
$$

or

$$
\ln \left(\frac{T_{2}}{T_{1}}\right)=\ln \left(\frac{V_{2}}{V_{1}}\right)^{1-\gamma}=\ln \left(\frac{V_{2}}{V_{1}}\right)^{-1(\gamma-1)}=-1 \cdot \ln \left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1}=\ln \left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}
$$

$$
\therefore \quad \ln \left(\frac{T_{2}}{T_{1}}\right)=\ln \left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}
$$

$$
\therefore \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\zeta-1}
$$

$$
\therefore \quad T_{1} V_{1}^{\gamma-1}=T_{2} \cdot V_{2}^{\gamma-1}
$$

(C) Relationship between temperature and pressure: For an adiabatic reversible expansion of an ideal gas, the workdone is given by.

$$
\begin{aligned}
& d u=d_{W}=c_{V} \cdot d T=-P d x=-n R T\left(\frac{d v}{v}\right) \quad\left\{\because P=\frac{n R T}{V}\right\} \\
& \therefore c_{v} \cdot d T=-n R T \cdot d(\ln v)+H(P) \quad \quad\left\{\because \frac{d x}{x}=d \cdot(\ln x)\right\}
\end{aligned}
$$

fact

$$
\begin{equation*}
C_{V} \cdot d T=-P \cdot d V \tag{1}
\end{equation*}
$$

but for an ideal gas,

$$
\begin{equation*}
P V=n R T \tag{2}
\end{equation*}
$$

differentiating equation (2) on both side

$$
\begin{align*}
& P \cdot d V+V d P=n R d T \\
\therefore & -P \cdot d V=-n R \cdot d T+V \cdot d P
\end{align*}
$$

putting value of equation (3) in equation (1).

$$
\begin{aligned}
& \therefore \quad C_{V} \cdot d T=-n R \cdot d T+V \cdot d P . \\
& \therefore \quad V \cdot d P=C_{V} \cdot d T+n R \cdot d T \\
& \operatorname{nRr}\left(\frac{d P}{P}\right)=\left(C_{v}+n R\right) d T \\
& \operatorname{nRT} \cdot\left(\frac{d P}{P}\right)=C_{P} \cdot d T \\
& \left\{\because C_{p}-C_{v}=n R+C_{V}+n R=C_{p}\right\} \\
& \frac{d P}{P}=\frac{C_{P}}{n R^{2}}\left(\frac{d T}{T}\right) \\
& d(\ln P)=\frac{c_{P}}{C_{P}-C_{V}} \cdot d(\ln T)-\left\{\because \frac{d x}{x}=d \cdot(\ln x)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& d(\ln P)=\frac{1 \cdot /(v)}{\left(\frac{c_{p}-c_{v}}{c_{v}}\right)} \cdot d(\ln T) \\
& d(\ln P)=\frac{\gamma}{\Upsilon-1} \cdot d(\ln T) \quad\left\{\because \quad\left\{\because \frac{c_{p}}{c_{v}}=\gamma+\frac{c_{v}}{c_{v}}=1\right\}\right.
\end{aligned}
$$

integrating equation (5) on both side, we get.

$$
\int_{P_{1}} d(\ln P)=\left(\frac{\gamma}{\xi-1}\right) \int_{T_{1}} d(\ln T)
$$

$$
\begin{array}{rlr}
\ln P_{2}-\ln P_{1} & =\left(\frac{\gamma}{Y-1}\right)\left(\ln T_{2}-\ln T_{1}\right) \\
\ln \left(\frac{P_{2}}{P_{1}}\right) & =\left(\frac{Y}{Y-1}\right) \cdot \ln \left(\frac{T_{2}}{T_{1}}\right) & \because \ln x-\ln \gamma=\ln \left(\frac{x}{\gamma}\right) \\
\ln \left(\frac{P_{2}}{P_{1}}\right) & =\ln \left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}}
\end{array}
$$

$$
\therefore \quad \frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\Upsilon-1}}
$$

Hence for adiabatic reversible expansion of an ideal gas.

$$
\begin{aligned}
& \text { (i) } \frac{p_{1}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma} \\
& \text { (ii) } \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=\left(\frac{V_{2}}{V_{1}}\right)^{1-\gamma} \\
& \text { (iii) } \frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}}
\end{aligned}
$$

The tom of meat
High temp Γ wee ital
spontaneously
\longrightarrow The flow of heat low temp \longrightarrow high temp.

$$
\begin{aligned}
& \text { nom-spontaneous (by using some } \\
& \text { external energy). }
\end{aligned}
$$

Example: Refrigerator
electrical energy \longrightarrow used tc
work

lower the temp.
\longrightarrow heat engine.

$\left\{\begin{array}{l}\text { without using working substance, heat energy } \\ \text { cannot be converted to work energy }\end{array}\right\}$

Without changing the state of stat system, complete conversion of heat energy \longrightarrow work energy is not possible.
\longrightarrow It is not possible to construct 100% efficient heat engine.
$\xrightarrow{\text { Heat engine : convert }} \underset{\text { heat }}{\text { energy }} \longrightarrow \begin{gathered}\text { work } \\ \text { energy. }\end{gathered}$
η, efficiency of heat engine $=\frac{\text { Workdone } \quad(W)}{\begin{array}{c}\text { amount of heat } \\ \text { absobed }\end{array}(q)}=\frac{4}{9}$

\# Carnot beat engine: ideal/reference heat engine by which we can calculate maximum conversion of heat energy \longrightarrow work energy. \longrightarrow system: 1 mole of ideal gas
\therefore undergo. 4 successive operation.

1) isothermal reversible expansion
ii) adiabatic reversible expansion.
iii) isothermal reversible compression.
iv) adiabatic reversible compression.
i) isothermal reversible expansion. $(A \longrightarrow B)$

$$
\begin{gathered}
\Longrightarrow \text { some energy is required } \\
\Longrightarrow \text { required energy is taken from surrounding. } \\
q_{2}=\text { amount heat absorbed from surrounding. } \\
=\text { energy reservior. }
\end{gathered}
$$

adiabatic
ii) : reversible expansion. $B \longrightarrow C$
\Longrightarrow some energy in required
\Rightarrow it used from system's internal energy.
\Rightarrow system's Internal energy \downarrow
\Rightarrow temperature $\downarrow, \quad\left(T_{2}>T_{1}\right)$
iii) isothermal reversible compression $c \longrightarrow 0$.

$$
\begin{aligned}
& \Longrightarrow \text { some energy is } \quad \text { released } \\
& \Longrightarrow \text { required energy } \\
& \qquad \begin{aligned}
q_{1} & \text { amount of heat released to surrounding. } \\
& \propto \text { sink. }
\end{aligned}
\end{aligned}
$$

iv) adiabatic reversible compression $\quad D \longrightarrow A$

$$
\begin{aligned}
& \Rightarrow \text { some energy is released } \\
& \Longrightarrow \text { released energy remains in system } \\
& \Longrightarrow \text { systemis internal energt } \uparrow \\
& \Longrightarrow \text { temp } \uparrow \quad\left(T_{2}>T_{1}\right)
\end{aligned}
$$

\# Expression for workdone during Carnot's Cycle and etticiency of new w".""
(i) Isothermal Reversible Expansion.

$$
\begin{aligned}
& \text { - } T \text { : constant, expansion: } k L=- \text { ie valued } \\
& -d T / \Delta T=0 \quad \because \Delta U=0 \\
& \text { - Ac first Jam } \\
& \Delta U=q+w \\
& \therefore \quad q=-W \\
& \text { - for IRE } \\
& q_{2}=-W_{1}=-(-p d v) \\
& =+P d V \text {. } \\
& =\frac{R T_{2}}{v} d v . \\
& \left\{\because P V=n R T \text { \& } P=\frac{n R T_{2}}{N}\right\} \\
& =R T_{2} \int_{r_{1}}^{V_{2}} \frac{d V}{V_{1}} \quad\{\text { for } n=1\} \\
& =R T_{2} \int_{v_{1}}^{v_{1}} d(\ln v) \quad\left\{\because \frac{d x}{x}=d(\ln x)\right\} \\
& =R T_{2}\left(\ln V_{2}-\ln V_{1}\right) \\
& q_{2}=-W_{1}=R T_{2} \ln \left(\frac{y_{2}}{v_{1}}\right) \longrightarrow\left\{\because \ln x-\ln y=\ln \left(\frac{x}{r}\right)\right.
\end{aligned}
$$

(ii) Adiabatic Reversible expansion ($-W$)

- for expansion $k l=-v e$ valued
- $q=0$, no exchange of heat b/w system \& surrounding.
- A/c to first lam.

$$
\begin{align*}
\Delta L & =k \\
\text { or }-w & =-d U=-c_{v} d T \quad\{\because n=1\} \\
- \text { for ARE, } \quad-k_{2} & =-c_{v}\left(T_{1}-T_{2}\right) \\
-k_{2} & =c_{v}\left(T_{2}-T_{1}\right) \tag{2}
\end{align*}
$$

iii) Isothermal Reversible Compression

- T constant, $d T / \Delta t=0 \quad \therefore \Delta U / d U=0$.
- Ale to st For compression ($\mathrm{H} N$

$$
k=+v e \text { valued } \quad k=-R T_{1} \frac{d v}{v} \text {. }
$$

- but for isothermal process.

$$
q=-|\alpha|
$$

- For IRC

$$
\begin{align*}
q_{1}=-k_{3} & =R T_{1} \frac{d V}{v} \\
& =R T_{1} \int_{V_{4}}^{v_{4}} \frac{d V}{V} \\
& =R T_{1} \int_{V_{3}}^{V_{3}} d(\ln V) \quad\left\{\because \frac{d x}{x}=d(\ln x)\right\} \\
& =R T_{1}\left(\ln v_{4}-\ln x_{3}\right) \\
q_{1} & =-w_{3}
\end{align*}=R T_{1} \ln \left(\frac{v_{4}}{r_{3}}\right) \quad\left\{\because \ln x-\ln y=\ln \left(\frac{x}{y}\right)\right\}
$$

ix) Adiabatic Reversible Compression $(+14)$

- $q=0$, no heat exchange occur b/w sptem \& surrounding
- Apr to pos lane

$$
\Delta u=k .
$$

- for compression $W=+v e$ valued $(+14)$
- For $A R C$

$$
\begin{align*}
W_{4}=d U & =-C_{V}\left(T_{2}-T_{1}\right) \\
W_{4} & =-C_{V}\left(T_{2}-T_{1}\right) \tag{4}
\end{align*}
$$

But for adiabatic processes, we know that

$$
T V^{s-1}=\text { constant. }
$$

Now $A R E$ curve $B C$

$$
\begin{align*}
& T_{2} V_{2}^{\gamma-1}=T_{1} V_{3}^{\Upsilon-1} \\
\therefore & \frac{T_{2}}{T_{1}}=\frac{V_{3}^{\gamma-1}}{V_{2}^{\gamma-1}} \tag{5}
\end{align*}
$$

tor $A R C$ curve $C D$,

$$
\begin{align*}
& T_{1} V_{4}^{\Upsilon-1}=T_{2} V_{1}^{\gamma-1} \\
\therefore & \frac{T_{2}}{T_{1}}=\frac{V_{4}^{Y-1}}{V_{1}^{\Upsilon-1}} \tag{6}
\end{align*}
$$

Nom from equation (5) and equation (6), we get.

$$
\begin{align*}
& \frac{V_{3}^{\gamma-1}}{V_{2}^{Y-1}}=\frac{V_{4}^{\gamma-1}}{V_{1}^{\gamma-1}} \\
\therefore & \frac{V_{2}}{V_{2}}=\frac{V_{4}}{V_{1}} \\
\therefore & \frac{V_{2}}{V_{1}}=\frac{V_{3}}{V_{4}}- \tag{7}
\end{align*}
$$

Nous net workdone obtained during Carnot's Cycle or by Carnot heat engine.

$$
\begin{align*}
& W_{\text {not }}=-W_{1}-w_{2}-w_{3}+W_{4} \quad\{\text { from equation } 1 \text { to } 4\} \\
& =q_{2}-\alpha_{2}+q_{1}+H_{4} \\
& =R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right)+C_{y}\left(T_{2}-T_{1}\right)+R T_{1} \ln \left(\frac{V_{4}}{V_{3}}\right)-C_{0}\left(T_{2}-T_{1}\right) \\
& \left\{\because \text { from } \mathrm{eq}^{n} 1 \text { to } 4\right\} \\
& =R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right)+R T_{1} \ln \left(\frac{V_{4}}{V_{3}}\right) \\
& =R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right)-R T_{1} \ln \left(\frac{V_{3}}{V_{4}}\right) \\
& =R T_{2} \ln \cdot\left(\frac{V_{2}}{v_{1}}\right)-R T_{1} \ln \left(\frac{V_{2}}{x_{1}}\right) \\
& \left\{\because \ln \left(\frac{x}{y}\right)=-\ln \left(\frac{y}{x}\right)\right\} \\
& \{\because \text { from equation } 7\} \\
& W_{\text {net }}=R\left(\mathbb{T}_{2}-T_{1}\right) \ln \left(\frac{V_{2}}{V_{1}}\right) \tag{8}
\end{align*}
$$

Net heat absorbed br the Earnot heat engine.

$$
\begin{aligned}
Q_{\text {net }} & =q_{2}-q_{1} \\
& =R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right)+R T_{1} \ln \left(\frac{V_{4}}{V_{3}}\right) \\
& =R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right)-R T_{1} \ln \left(\frac{V_{3}}{V_{4}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Q_{\text {net }}=R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right)-R T_{1} \ln \left(\frac{V_{2}}{V_{1}}\right) \quad\{\because \text { from eq } \neq\} \\
& Q_{\text {net }}=R\left(T_{2}-T_{1}\right) \ln \left(\frac{V_{2}}{V_{1}}\right)=W_{\text {net }} \text { (g) }
\end{aligned}
$$

Adc to defination of efficiency of heat engine.

$$
\begin{aligned}
& \eta=\frac{\text { net workdone by the heat engine }}{\text { amount of heat energy absorbed }}=\text { net heat absorbed by the system } \\
& \eta=\frac{\text { Hnet }}{q_{2}}=\frac{Q_{\text {net }}}{q_{2}}=\frac{q_{2}-q_{1}}{q_{2}}=\frac{R\left(T_{2}-T_{1}\right) \ln \left(\frac{x_{2}}{V_{1}}\right)}{R_{2} \ln \left(\frac{x_{2}}{V_{1}}\right)} \\
& \eta=\frac{T_{2}-T_{1}}{T_{2}}=1-\frac{T_{1}}{T_{2}} \\
& \eta=\frac{q_{2}-q_{1}}{q_{2}}=1-\frac{q_{1}}{q_{2}} \\
& \frac{W_{\text {net }}}{q_{2}}=\frac{T_{2}-T_{1}}{T_{2}} \\
& W_{\text {net }}=q_{2}\left(\frac{T_{2}-T_{1}}{T_{2}}\right)=q_{2} \times \eta=q_{2} \times \text { efficiency. }
\end{aligned}
$$

$$
\frac{q_{b}}{q_{c}}=\frac{q_{2}}{q_{1}}=\frac{R T_{2} \ln \left(\frac{V_{2}}{V_{1}}\right)}{R T_{1} \ln \left(\frac{v_{4}}{v_{3}}\right)}=\frac{R T_{2} \ln \left(\frac{v_{2}}{V_{1}}\right)}{-R T_{1} \ln \left(\frac{v_{3}}{V_{4}}\right)}
$$

$$
\frac{q_{h}}{q_{c}}=\frac{q_{2}}{q_{1}}=\frac{-\phi T_{2} \ln \left(\frac{v_{2}}{v_{1}}\right)}{\not \phi_{1} \ln \left(\frac{x_{2}}{v_{1}}\right)} \quad\left\{\because \text { from } e q^{n} \neq\right\}
$$

$$
\therefore \quad \frac{q_{h}}{q_{c}}=-\frac{T_{2}}{T_{1}}
$$

heat absorbed/heat supplied/ heat of reservoir $=q_{h}=q_{2}=-q_{c}\left(\frac{T_{2}}{T_{i}}\right)$

$$
\begin{aligned}
\text { heat released/heat rejected/ heat of sink }=q_{c}=q_{1} & =-q_{h}\left(\frac{T_{1}}{T_{2}}\right) \\
& =-q_{2}\left(\frac{T_{1}}{T_{2}}\right)
\end{aligned}
$$

efficiency $\eta=\frac{\cdots \cdots}{Q_{2} / q_{2}}=\frac{w_{1}}{q_{2}}$

$$
\begin{aligned}
& \eta=\frac{T_{2}-T_{1}}{T_{2}} \\
& \eta=\frac{\text { net heat absorbed }}{q_{2}}= \\
& \eta=\frac{N 1}{q_{2}}=1-\frac{q_{1}}{q_{2}}=1-\frac{T_{1}}{T_{2}}
\end{aligned}
$$

$q_{2}-\underline{\underline{\text { reservoir }}}$

$$
q_{1}-\sin k
$$

$$
\eta=\frac{\text { net heat absorbed }}{q_{2}}=\frac{q_{2}-q_{1}}{q_{2}}
$$

$$
\eta=\frac{\omega_{1}}{-q_{2}}=1-\frac{T_{1}}{T_{2}}=1-\frac{q_{1}}{q_{2}}
$$

$\Rightarrow\left\{\begin{array}{l}\text { From the above equation efficiency of heat engine. } \\ \text { not depends on mature of working substance bet }\end{array}\right.$ xi. $\left\{\begin{array}{l}\text { it depends an temperature where it is working. } \\ \text { it is called the carnot theorem }\end{array}\right\}$

Que-1 A heat engine carries 1 mole of ideal monoatomic gus around the cycle as shown in the figure, the amount of heat added in process $A \longrightarrow B$ and the heat removed process $c \longrightarrow A$.

$\longrightarrow A$ constant pressure, isobaric.

$$
\begin{aligned}
q_{v}=\Delta H & =n C_{p} \Delta T \\
& =1 \times \frac{5}{2} R(-150) \\
& =-375 R
\end{aligned}
$$

1. $450 R,-450 R$
2. $450 R, \quad-225 R$
3. $450 R,-375 R$
4. $\quad 375 R, \quad-450 R$
\therefore option (3) is the correct answer.

Que-1 A mixture of 2 moles of co \& 1 mole of O_{2}, in a dosed vessel is ignited to convert the CO_{\triangle} into CO_{2}. If $\triangle \mathrm{H}$ is the enthalpy change $\&$ Δv is infernal energy change, then.
i) $\Delta H\langle\Delta E \quad$ ii) $\Delta H\rangle \Delta E \quad$ iii) $\Delta H=\Delta E$
iv) The relationship depends on heat capacity of vessel).

Que-2 - At constant $T \& P$, which one of the following statement is correct

$$
\mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2} \cdot(\mathrm{~g})
$$

A] ΔH is independent of the physical state of the reactant of that compound
B] $\Delta H<\Delta E$
c] $\Delta H>\Delta E$
D] $\Delta H=\Delta U$
\Longrightarrow For above reaction

$$
\begin{aligned}
& \Delta n_{g}=1-1 \frac{1}{2}=-\frac{1}{2} . \quad \text { option (B) is the correct } \\
\therefore & \Delta H=\Delta U+R T \Delta n_{g} \quad \text { answer } \\
\therefore & \Delta H=\Delta U-\frac{1}{2} R T \\
\therefore & \Delta H<\Delta U
\end{aligned}
$$

Que-3 If $\Delta H \& \Delta U$ is change in enthalpy \& the change in internal energy respectively, accompanying a gaseous reaction.
(A) ΔH is always greater than ΔU
(B) $\triangle A<\triangle E$ only if the number of moles of product is greater than the number of moles of reactant.
(c) ΔH is always less than ΔU.
(D) $\Delta H<\Delta E$ if n product $<n_{\text {reactant }}$.
$\Longrightarrow \quad \Delta H=\Delta U+R T \Delta n_{g}$.
$\Delta H=\Delta U-x R T$
$\therefore \Delta H<\Delta U$ only if n product $<n_{\text {reactant }}$.
hence option (D) is the correct answer.

$$
Q / q=C \Delta T={ }^{n} C_{n} \Delta T=m C_{s} \Delta T
$$

$$
\longrightarrow \text { isochoric process } \quad V=\text { constant } \quad C=C_{x} \text {. }
$$

\longrightarrow isobaric process $P=$ constant $C=C_{p}$.
$T E=\infty \rightarrow$ isothermal process $T=$ constant $\therefore \Delta T=0$

$C=0 \quad \rightarrow$ adiabatic process $\quad q=0 . \quad C=\frac{q}{\Delta T}=\frac{0}{\Delta T}=0$.
$\longrightarrow q$: disordered form of energy.
\longrightarrow M: order form of energy.

Work
\longrightarrow isobarivic process. $\quad P=$ constant.
$W=-\int p d V=-P \int_{v_{1}}^{V_{2}} d V=-p\left[v_{2}-V_{1}\right]=-p \Delta V$.

$$
\begin{aligned}
& \text { Wirreversible } \neq \text { Wreversible } \quad(\because M \text {-path function }) \\
& W_{\text {reversible }}>\text { Mirreversible }
\end{aligned}
$$

\longrightarrow reversible isothermal process
T - constant. infinite step.

$\omega=-\int^{x_{2}} p d r$. - io thermal irreversible process
$\mu=-\int_{v_{1}}^{x_{1}} \frac{v_{2}}{v} d v=-n R T \int_{x_{1}}^{v_{2}} \frac{d v}{v}=-n R T \ln \frac{v_{2}}{v_{1}}$
$W=-R .303 n R T \log \frac{v_{2}}{v_{1}}=-2.303$ nR T $\log \frac{p_{1}}{p_{2}}$ - for reversible process only
\longrightarrow isothermal irreversible process.
$P_{\text {ex }}=$ constant

$$
P_{\text {ex }}=P_{\text {system }} \text {. }
$$

definite step

$$
\Delta T=0 .
$$

1
against constant external pressure

$$
W_{\text {irreversible }}=-\int p_{\text {ex }} \cdot d V
$$

$$
H_{i_{r}}=-P_{\text {ex }} \Delta V . \text { - similar to formula of isobaric process }
$$

irreversible adictiatic process

$$
W_{\text {ir }}=-P_{\text {ex }} \Delta V
$$

Example 10 mole of an ideal gas is expanded reversibly from 1 L to 10 L at $227^{\circ} \mathrm{C}$. \longrightarrow (a) reversible isothermal expansion.

$$
\begin{aligned}
n & =2 \mathrm{~mol} . \\
v_{1} & =1 \mathrm{~L} \\
v_{2} & =10 \mathrm{~L} . \\
T & =227^{\circ} \mathrm{C}+273
\end{aligned}=500 . \quad \begin{aligned}
M=-2.303 \mathrm{nRT} \log \frac{v_{2}}{v_{1}} & =-2.303 \times 10 \times 8.3 \times 500 \times \log \frac{10}{1} \\
& =-2309 \times 8.3 \times 5 \times 1 \\
& =95,574.5 \\
& =95.6 \mathrm{~kJ} .
\end{aligned}
$$

Example: 2 moles of an ideal gas expands reversibly from 1 L to 10 L at $227^{\circ} \mathrm{C}$ find the workdone by the gas on the system,
$\cdots \quad n=2$ mole $\quad V_{1}=1 \mathrm{~L} \quad V_{2}=10 \mathrm{~L} \quad T=500 \mathrm{~K} .\left(227^{\circ} \mathrm{C}\right)$
process: isothermal reversible expansion.
$K=-2.303 n R T \log \frac{V_{2}}{V_{1}}=-2.303 \times 2 \times R \times 5001 \log \frac{10}{1}$

$$
\text { (1) if } \begin{aligned}
R & \equiv 2 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K}^{-1} \\
k I & =2303 \times 2 \\
& =4606 \mathrm{tal} . \\
& =4.606 \mathrm{kcal} .
\end{aligned}
$$

$$
=2303 \mathrm{R} .
$$

$$
\text { (1) if } \begin{aligned}
R & =8.3 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{k} \\
k 1 & =2.303 \times 8.3 \\
& =19.115 \mathrm{~J} \\
& =19.115 \mathrm{~kJ}
\end{aligned}
$$

Pressure unit

$$
\begin{aligned}
1 \text { atm } & =760 \mathrm{~mm} / \mathrm{Hg} \\
& =760 \text { torr. } \\
1 \text { bar } & =10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& =10^{5} \text { Pascal. } \\
1 \text { atm } & =1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.013 \times 10^{5} \mathrm{~Pa} \\
1 \text { atm } & =1.013 \mathrm{bar}
\end{aligned}
$$

$$
\begin{aligned}
1 \text { atm. } L & =1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \times 10^{-3} \mathrm{~m}^{3} \\
& =101.3 \mathrm{~N} \cdot \mathrm{~m}=101.3 \mathrm{~J} \\
1 \text { atm. } L & =101.3 \mathrm{~J} \\
1 \text { bar. } & =100 \mathrm{~J}
\end{aligned}
$$

Q4. Example (3) 2 mole of an ideal gas expands from 1 L to 10 L at $227^{\circ} \mathrm{C}$. against 2 atm constant external pressure

$$
\begin{aligned}
& \longrightarrow \quad n=2 \text { mole } \quad T=500 \mathrm{~K}\left(227^{\circ} \mathrm{C}\right) \text { - isothermal. } \\
& v_{1}=1 \mathrm{l} . \quad P_{\text {ex }}=2 \mathrm{~atm} \quad \text { constant: irreversible process. } \\
& v_{2}=101 \text {. } \\
& \therefore \quad W=-P_{\text {ex }} \Delta V \text {. for isothermal irreversible expansion process. } \\
& k=-2 \times 9 \\
& =-18 \text { atm.L. } \\
& =-18 . \times 101.3 \mathrm{~J} \\
& =1823.4 \mathrm{~J} \\
& =1.823 \mathrm{~kJ} \text {. }
\end{aligned}
$$

\rightarrow klork for clockwise cyclic process \longrightarrow Work for anticlockwise cyclic process

$$
\begin{aligned}
& \text { radius, } \theta=2 \\
& \begin{aligned}
\text { work } & =\pi r^{2} \\
& =4 \pi
\end{aligned}
\end{aligned}
$$

For clock mise cyclic work
$\longrightarrow \quad c=\frac{q}{\Delta T}$

$$
\begin{array}{rr}
\text { is isothermal process } & \text { ii) isochoric process. } \\
\Delta T=0 . & V=\text { constant }^{\Delta T} \\
C=C_{V}
\end{array}
$$

iii) adiabatic process
$q=0$
$c=0$
xiv> isobaric proce
$\rho=$ constant
$C=C_{p}$
\longrightarrow For irreversible process.
Pax is always constant.
\rightarrow For reversible process
Mex changes very infinitesimally for each step.

Que - 1 If $Q, E \notin H$ denotes respectively heat added, change in internal energy and work done in a close cyclic system, then:

1) $Q=0$.
2) $u=0$
3) $Q=4=0$
4) $E=0$
\longrightarrow for cyclic closed system. changes in all state function is equal to 0 .

$$
\therefore \quad E=0
$$

option 4 is the correct answer.
Que-2 In thermodynamic processes which of the following statement is not true ε.

1) In adiabatic process, $P V^{\gamma}=$ constant
2) In adiabatic process, system is insulated from surrounding.
3) In isochoric process, pressure remains constant.
4) In isothermal process, temperature remains constant.
$\Delta V=0$.
but $P=$ constant in isobaric process where $\Delta P=0$

Que- 5 Pick out one that is not a state function.

1) temperature
\longrightarrow only 9 \& k are path functions
2) heat. and all others are state function.
3) volume
\therefore heat is not a state function.
4) internal energy
option (2) is correct ansecer
D

$$
\left\{\begin{array}{l}
P V^{Y}=\text { constant } \\
T V^{Y-1}=\text { constant } \\
\frac{1-Y}{D^{Y}}=\text { constant }
\end{array}\right\} \text { for adiabatic process }
$$

Ques Solicit benzoic asset is combusted in bomb r cuterimeter at 27%.
\# Concept of entropy
\longrightarrow carnot heat engine

$$
\begin{aligned}
& \text { efficiency of heat engine, } \eta=\frac{k 1}{q_{2}}=1-\frac{q_{1}}{q_{2}}=1-\frac{T_{1}}{T_{2}} \\
& \therefore \quad 1-\frac{q_{1}}{q_{2}}=1-\frac{T_{1}}{T_{2}} \\
& \therefore \quad \frac{q_{1}}{q_{2}}=\frac{T_{1}}{T_{2}}
\end{aligned}
$$

$Q_{1} \& Q_{2}$ represent the amount of heat exchange.
$q_{2}=$ amount of heat absorbed $=+$ we value.

$$
\begin{aligned}
& \frac{T_{1}}{T_{2}}=\frac{-q_{1}}{+q_{2}} \\
& \therefore \frac{q_{2}}{T_{2}}=\frac{-q_{1}}{T_{1}} \\
& \therefore \frac{q_{2}}{T_{2}}+\frac{q_{1}}{T_{1}}=0
\end{aligned}
$$

\longrightarrow for finite change.

$$
\sum \frac{Q}{T}=\frac{q_{1}+q_{2}}{T_{1}+T_{2}}=0
$$

\longrightarrow for infinitesimal/small changes.

$$
\sum \frac{d q}{\pi}=0
$$

$$
\begin{aligned}
& \Delta s=\frac{Q}{T}=\frac{\underline{\underline{\text { grew }}} T}{T} \longrightarrow \text { for finite changes } \\
& d s=\frac{d g}{T} \longrightarrow \text { for small changes. }
\end{aligned}
$$

$\Delta s \Rightarrow\left\{\begin{array}{l}\text { Ratio of amount of heat exchange in reversible process } \\ \text { to absolute temperature is called change in entropy. }\end{array}\right\}$

$$
\begin{aligned}
& \Delta s=\frac{Q_{\text {rev }}}{T}=\frac{Q}{T}=\frac{q_{1}+q_{2}}{T_{1}+T_{2}} \\
& d s=\frac{d q}{T}=\frac{d q_{1}+d q_{2}}{T_{1}+T_{2}}
\end{aligned}
$$

$\Rightarrow\left\{\begin{array}{c}\text { At particular cobsolute temperceture ' } T \text { ' } \\ Q \uparrow \text { then } \Delta s \uparrow\end{array}\right\} \longrightarrow\left\{\begin{array}{c}\text { at constant }{ }^{\prime} q^{\prime} \text { or ' } Q \text { ' } \\ T(\uparrow) \text { then } \Delta s(\downarrow)\end{array}\right\}$

$$
\underline{\text { unit }} \Longrightarrow \underline{\underline{\mathrm{cal} / \mathrm{k}} \text { or } \mathrm{J} / \mathrm{k}}
$$

Example

	system -
	$10^{\circ} \mathrm{C}$
	\uparrow

$$
\Delta S_{40^{\circ} \mathrm{C}}<\Delta S_{10^{\circ} \mathrm{C}}
$$

\rightarrow Clausius put' forth the concept of 'entropy' f 'change in entropy'
\# Entropy - It is a measure of disorderness and/or randomness or it is a measure of dispersion energy in the system. $\left.\begin{array}{cc}\begin{array}{c}\text { radom mess } \\ \text { disorderness }\end{array} & \uparrow \\ \text { dispersion energy y }\end{array}\right\}$

Example (1) solid \longrightarrow liquid.
\rightarrow disorderness increases $\Longrightarrow \therefore$ entropy increases $\Longrightarrow \Delta s=$ tue. / $\Delta s>0$ \Longrightarrow spontaneous process
(2) liquid \longrightarrow solid.
\Longrightarrow discrchess $\downarrow \Rightarrow \therefore$ entropy $\downarrow \Longrightarrow \Delta s=-v e / \Delta S<0$.
\Rightarrow non-spontaneous process.
\longrightarrow some important orders.
i) order of $=\underline{\text { entropy }}(\mathrm{s}) \longrightarrow$ gas $>$ liq. $>$ solid
ii) order of internal energy $(U) \longrightarrow$ gas $>\mathrm{liq}>$ solicl.
iii) order of enthalpy $(H) \longrightarrow$ gas $>\mathrm{liq}>$ solid.

$$
\stackrel{\text { Example (3) }}{ }\left\{\begin{array}{r}
\text { solid } \rightleftharpoons \text { liquid } \\
\text { equilibrium } \Longrightarrow \Delta s=0
\end{array}\right\}
$$

\# some physical processes.

$$
\begin{aligned}
& \rightarrow \text { fusion } \quad s \longrightarrow l \text {. } \\
& \rightarrow \text { freezing } \quad l \longrightarrow s
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \text { evceporation } \quad \longrightarrow g
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \text { condenscetion } \quad g \longrightarrow l \quad \Delta S \equiv-v e .
\end{aligned}
$$

\# Driving forces for spontaneous processes.

1) Tendance to attain minimum energy
low energy \Longrightarrow high stability.
Sigh energy \Rightarrow lowe stability

Energy of system $\propto \frac{1}{\text { stability of }}$ that system
\{System always move spontaneously from high energy to low energy. state\} ~

Example (2) flow of heat hot boby \longrightarrow cold body

$$
\left(\begin{array}{ll}
\text { high }
\end{array}\right) \quad(\text { low } q)^{\prime}
$$

heat energy \notin in
this process
Both processes above moves spontaneously
\rightarrow For exthermic processes, there is decrease in energy

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{C}+\mathrm{O}_{2} \\
\mathrm{R} \xrightarrow{\text { const " } V \text { " }} \mathrm{CO}
\end{array} \mathrm{CO}+\text { heat } \mathrm{P} \downarrow \mathrm{Cheat.} \Delta U \downarrow \text { spontaneous } \\
& R \xrightarrow{\text { cons " } P \text { " }} \mathrm{\Delta U} \\
& R+\text { spontaneous }
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\text { As energy decreases during all exothermic or exergomic process. } \\
\text { they are spontaneous in mature }
\end{array}\right\}
$$

\Rightarrow At room temperature.

$$
\begin{array}{ll}
\frac{\text { VIP }}{\text { Case }} \longrightarrow \text { mater } & \Delta H=+ \text { eve. } \\
& \begin{array}{l}
\Delta H \text { thermic }
\end{array} \Rightarrow \text { but it is spontaneous }
\end{array}
$$

The spontaneoity of this reaction is
explained by entropy change.
2) Tendancy to attain maximum randomness.
$\left\{\begin{array}{c}\text { system always move spontaneously from more order } \\ \text { state to less order state } \\ \text { more order state } \longrightarrow \text { less order state. }\end{array}\right\}$

$$
\Delta S=+\mathrm{Ve}
$$

Example (1) 3 coins $\Longrightarrow 8$ probability.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { HAH } \\
\text { IT }
\end{array}\right\} \quad\left\{\begin{array}{lll}
\text { HHT } & \text { HTH } & \text { TH } \\
\text { TH } & \text { THT } & \text { HIT }
\end{array}\right\} \\
& 2 / 8
\end{aligned}
$$

 \Longrightarrow below $0^{\circ} c \quad$ ice \longrightarrow water $\Delta s=+y e \Rightarrow$ but non-spontaneous
\longrightarrow at $0^{\circ} \mathrm{C} \quad$ ice \rightleftharpoons water $\Delta S=0$
\# characteristic of entropy (s).
\rightarrow state function.
\rightarrow extensive property.
\rightarrow Entropy (s) is not possible to calculate but change in entropy (Δs) can be calculated experimentally.

Entropy change of universe in reversible/equilibriam process
reversible process :

$$
\begin{aligned}
\Delta S_{\text {syst }} & =\frac{q}{T}=\frac{q_{\text {rev. }}}{T} \quad \Delta S_{\text {surrounding }}=-\frac{q}{T}=-\frac{q_{\text {rev }}}{T} \\
\therefore \Delta S_{\text {universe }} & =\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}=\frac{q_{\text {rev }}}{T}+\left(-\frac{q_{\text {rev }}}{T}\right)
\end{aligned}
$$

$\therefore \Delta S_{\text {universe }}=0$ for reversible/ equilibrium processes.
Example (1) $\left\{\begin{array}{cc}\text { At } 0^{\circ} \mathrm{C} \text {. } \begin{array}{c}\text { ice } \\ \\ \Delta S_{4 n i}=0\end{array} \text { water. }{ }^{2} \text { important example. }\end{array}\right.$
\# Entropy change of universe in irrevensible/spamtaneous process.
spontaneous process:

$$
\begin{aligned}
& \Delta S_{\text {system }}=-\frac{Q}{T_{1}} \quad \Delta S_{\text {surrounding }}=\frac{+Q}{T_{2}} \\
& \therefore \Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}=-\frac{Q}{T_{1}}+\frac{Q}{T_{2}} \\
&=Q\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]=Q \times\left[\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right] \\
& \therefore \Delta S_{\text {universe }}=Q\left[\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right]=+v . \quad\left(\because \quad T_{1}>T_{2} \& \frac{T_{1}-T_{2}}{T_{1} T_{2}}>0\right)
\end{aligned}
$$

$\therefore \quad \Delta S_{\text {universe }}=+v e+>0$ - for irreversible spontaneous proces

4

$$
\left\{\begin{array}{l}
\text { In nature always spontaneous, processes takes place. } \\
\text { in which entropy increases, so entropy of the } \\
\text { universe always tends towards maximum }
\end{array}\right\}
$$

\# Entropy as a function of temperature (T) \& volume (V) for an ideal gas.
\rightarrow According to $I^{s t}$ lame., for one mole of an ideal gas.

$$
\Delta U=q+w=q-p \Delta V
$$

-for finite change.

$$
d U=d q+d k 1=d q-p d w
$$

- For infinitesimal change

\longrightarrow for infinitesimal change.

$$
\begin{align*}
& d Q=d U+p d V \\
& \frac{d Q}{T}=\frac{d U}{T}+p \frac{d V}{T} \\
& d S=\frac{d U}{T}+\frac{p}{T} d V \quad\left(\because d S=\frac{d q}{T}\right) \tag{1}
\end{align*}
$$

for ' n " moles. of gas.

$$
q_{v}=d U=n C_{v} d T \quad \& \quad P V=n R T .
$$

for 1 mole of gas

$$
\begin{aligned}
& q_{v}=d U=C_{V} d T \quad \& \quad P V=R T \\
& \therefore \quad d s=\frac{C_{V} d T}{T}+R \frac{d V}{V} \quad\left(\because P V=R T+\frac{P}{T}=\frac{R}{V}\right)
\end{aligned}
$$

(2) For 1 mole
integrating equation (2).

$$
\begin{aligned}
& \int_{s_{1}}^{s_{2}} d s=C_{V} \int_{T_{1}}^{T_{2}} \frac{d T}{T}+R \int_{V_{1}}^{V_{2}} \frac{d V}{V} \quad \text { _for ' } 1 \text { ' mole of gas } \\
& \Delta s=C_{V} \cdot \ln \frac{T_{2}}{T_{1}}+R \ln \frac{V_{2}}{V_{1}} \quad \text { - for } 1 \text { mole of gas. }
\end{aligned}
$$

\therefore for ' n ' moles of ideal gas

$$
\begin{align*}
& \Delta S=n C_{v} \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{V_{2}}{V_{1}}=(3) \tag{3}\\
& \Delta s=2.303 n C_{V} \log \frac{T_{2}}{T_{1}}+2.303 n R \log \frac{V_{2}}{V_{1}}
\end{align*}
$$

\# Entropy as a function of T and P for an ideal gas.

$$
\begin{equation*}
\Delta s=n C_{v} \cdot \ln \frac{T_{2}}{T_{1}}+n R \cdot \ln \frac{V_{2}}{V_{1}}-\quad \int_{A}^{d s} d s, d s d_{1}^{d} d s \tag{3}
\end{equation*}
$$

$$
\Delta s=2.303 n C_{p} \ln \frac{T_{2}}{T_{1}}+2.303 . n R \log \frac{P_{1}}{P_{2}} \text { for } n \text { moles of ideal gas. }
$$

\# Entropy changes during various thermodynamic processes:

1. Isothermal process

$$
T_{1}=T_{2}
$$

\rightarrow at constant volume condition. ($v=$ constant)

$$
\begin{aligned}
\Delta S & =2.303 n C_{V} \log \left(\frac{T_{1}}{T_{1}} \text { or } \frac{T_{2}}{T_{2}}\right)+2.303 n R \log \frac{V_{2}}{V_{1}} \quad\left(\because T_{1}=T_{2}\right) \\
& =2.303 n C_{v} \log 1+2.303 n R \log \frac{V_{2}}{v} \\
\Delta S & =2.303 n R \log \frac{V_{2}}{V_{1}} \quad(\because \log 1=0)
\end{aligned}
$$

\longrightarrow at constant pressure condition.

$$
\begin{aligned}
& p \propto \frac{1}{V} \quad \because \frac{P_{1}}{P_{2}}=\frac{V_{2}}{V_{1}} \\
\therefore & \Delta S=2.303 n R \log \frac{P_{11}}{P_{2}} \quad\left\{\because \log \frac{T_{1}}{T_{1}}=\log 1=0 \text { because } T_{1}=T_{2}\right\}
\end{aligned}
$$

2. Isochoric process.

$$
\begin{aligned}
V & =\text { constant } \\
V_{1} & =V_{2} \\
\therefore \quad \Delta S & =2.303 n C_{V} \log \frac{T_{2}}{T_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ac. Kif rv-rki } \\
& \text { initial state } P_{1} V_{1}=n R T_{1} \\
& \text { Final state } P_{2} V_{2}=n R T_{2} \text {. } \\
& \begin{array}{cc}
\frac{P_{2} V_{2}}{P_{1} V_{1}}=\frac{n R T_{2}}{n R T_{1}} & \because \quad \frac{V_{2}}{V_{1}}=\frac{T_{2}}{T_{1}} \times \frac{P_{1}}{P_{2}} \\
n C_{x} \ln \frac{T_{2}}{T_{1}}+n R \ln \left(\frac{T_{2}}{T_{1}} \times \frac{P_{1}}{P_{2}}\right) & \left(\because \frac{V_{2}}{V_{1}}=\frac{T_{2}}{T_{1}} \times \frac{P_{1}}{P_{2}}\right)
\end{array} \\
& =n C_{v} \ln \frac{T_{2}}{T_{1}}+R \cdot \ln \frac{T_{2}}{T_{1}}+n R \cdot \ln \frac{P_{1}}{P_{2}} \\
& =\left(n C_{V}+R\right) \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{P_{1}}{P_{2}} \\
& \Delta S=n C_{p} \cdot \ln \frac{T_{2}}{T_{1}}+n R \cdot \ln \frac{P_{1}}{P_{2}} \quad\left(\because n C_{p}-n C_{x}=R \quad \& \quad n C_{n}+R={ }_{n} C_{p}\right) .
\end{aligned}
$$

3. Isobaric process.

$$
\begin{aligned}
P & =\text { constant } \\
P_{1} & =P_{2} . \\
\therefore \quad \Delta S & =n C_{p} \cdot \ln \frac{T_{2}}{T_{1}}=2.303 n C_{p} \cdot \log \frac{T_{2}}{T_{1}}
\end{aligned}
$$

4. Adiabatic process
\rightarrow Adiabatic No heat M/Q exchange takes place between system \&

Reversible process
surrounding

$$
\begin{aligned}
& Q=0 \\
& \therefore \quad \Delta S=\frac{Q}{T} \\
& \therefore \quad \triangle S=0
\end{aligned}
$$

\rightarrow Adiabatic. irreversible process.
$\|$ Irreversible process are spantaneous f entropy always. tends to maximum for spontaneous process.

$$
\therefore \quad \Delta 5>0
$$

Entropy increases during a spontaneous processes. like. adiabatic irreversible processes.
\# Entropy change on mixing of ideal gases.

at isothermal process condition.

$$
\begin{aligned}
& \Delta S_{1}=n_{1} R \cdot \ln \frac{V_{1}+V_{2}}{V_{1}}=n_{1} R \cdot \ln \frac{P_{1}^{0}}{P_{1}} \\
& \Delta S_{2}=n_{2} R \cdot \ln \frac{V_{1}+V_{2}}{V_{2}}=n_{2} R \ln \frac{P_{2}^{\circ}}{P_{1}}
\end{aligned}
$$

total entropy change on mixing of gus.

$$
\Delta S_{\text {mix }}=n_{1} R \ln \frac{V_{1}+V_{2}}{V_{1}}+n_{2} R \cdot \ln \frac{V_{1}+V_{2}}{V_{2}}
$$

$$
\begin{aligned}
\Delta S_{\text {mix }} & =R\left[n_{1} \ln \left(\frac{\|_{1} T 1_{2}}{n_{1}}\right)+n_{2} \ln \left(\frac{\mu_{1} T w_{2}}{n_{2}}\right)\right] \\
& = \\
& =R\left[n_{1} \ln \left(\frac{1}{x_{1}}\right)+n_{2} \ln \left(\frac{1}{x_{2}}\right)\right] \\
\Delta S_{\text {mix }} & =-\mathbb{R}\left[n_{1} \ln x_{1}+n_{2} \ln x_{2}\right]
\end{aligned}
$$

$$
\because\left(x_{1}=\frac{n_{1}}{n_{1}+n_{2}} \quad \& x_{2}=\frac{n_{2}}{n_{1}+n_{2}}\right)
$$

For two two gases of h_{1} \& $n_{2} \mathrm{~mol}$.
\rightarrow for ' i ' number of gases.

$$
\begin{aligned}
& \Delta S_{\text {mix }}=-R \sum_{i} n_{i} \ln x_{i}=-2.303 R \sum n_{i} \log _{\mathrm{m}} x_{i} \\
& \Delta S_{\text {mix }}=+ \text { we -positive. } \quad\left(\because \ln x_{i}=-v_{e}\right)
\end{aligned}
$$

$$
\therefore\left\{\begin{array}{c}
\text { mixing of two or "il ideal gases occurs } \\
\text { spontaneously }
\end{array}\right\}
$$ spontaneously

The component system

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& x_{1}+x_{2}<1 \\
& \ln x_{i} \text { or } \ln x_{2} \\
& \text { or } \ln x_{1}<0 .
\end{aligned}
$$

$$
\text { ie. } \ln x_{i}=-v_{t}
$$

$$
\left\{\begin{aligned}
N= & \text { total no. of } \\
& \text { moles } \\
= & n_{i}+n_{2}+\cdots+n
\end{aligned}\right.
$$

x_{i}-mole fractions
\Rightarrow another method.

$$
\begin{aligned}
\Delta S_{\text {mix }} & =n_{1} R \cdot \ln \left(\frac{P_{1}^{0}}{P_{1}}\right)+n_{2} R \cdot \ln \left(\frac{P_{2}^{0}}{P_{2}}\right) \\
& =R\left[n_{1} \cdot \ln \left(\frac{P_{1}^{0}}{P_{1}}\right)+n_{2} \ln \left(\frac{P_{2}^{0}}{P_{2}}\right)\right]
\end{aligned}
$$

Nom according to Raoult's law

$P_{1}^{0}=$ partial vapour pressure
x_{i} - mole fraction of 'i"' component.

$$
\begin{aligned}
p_{1} & =p_{1}^{0} x_{1} \quad \& \quad p_{2}=p_{2}^{0} x_{2} \\
\therefore \frac{p_{1}^{0}}{p_{1}} & =\frac{1}{x_{1}} \quad \frac{p_{2}^{0}}{p_{2}}=\frac{1}{x_{2}} \\
\therefore \Delta S_{\text {mix }} & =R\left[n_{1} \cdot \ln \left(\frac{1}{x_{1}}\right)+n_{2} \cdot \ln \left(\frac{1}{x_{2}}\right)\right]
\end{aligned} \quad(\because \ln 1)
$$

$$
\therefore \Delta S_{\text {mix }}=-N R \sum_{i} \frac{n_{i}}{N} \ln x_{i} \quad-\quad \text { for } r_{i} \text { ' number of gases. }
$$

$$
\begin{aligned}
& \therefore \Delta S_{\text {mix }}=-N R \sum_{i} x_{i} \ln x_{i} \\
& \therefore \Delta S_{\text {mix }}=-2.303 \text { NR } \sum x_{i} \log x_{i}
\end{aligned}
$$

$N=$ total number of moles of gases

$$
N=n_{1}+n_{2}+\ldots+n_{i}
$$

$$
\frac{n_{i}}{N}=x_{i}=\text { mole fraction }
$$

$$
\Delta s_{\text {mix }}=+v e . \quad\left(\because \log x_{i}<1=-v e\right)
$$ of'i' compar.

$$
x_{i} \longrightarrow\left\{\begin{array}{c}
\text { for 'in' component system. } \\
\Delta S_{\text {mix }} \text { is maximum eutien. } \\
x_{i}=\frac{1}{i}
\end{array}\right\} \xrightarrow[\text { point }]{\text { snapshot }}
$$

\longrightarrow For 3 component system.
$\Delta S_{\text {mix }}$ is maximum when.

$$
x_{1}=x_{2}=x_{3}=\frac{1}{3} \text { or, 0.33. }
$$

\# Entropy change during phase transition.

1. Fusion

Latent beat of fusion, $\Delta_{f} H$ - It is the amount of heat required for the conversion of 1 mole of solid to liquid or also called molar heat of fusion.

Entropy of fusion, $\triangle F S$ - Entropy change for 1 mole of substance during fusion is called entropy of fusion.

$$
\begin{aligned}
& \begin{array}{c}
\text { Role } \\
\text { solid }
\end{array} \xrightarrow[+q]{\text { Fusion }} \text { liquid. } \\
& +q=\text { molar heat of fusion. } \\
& \Delta_{F} H=\text { latent heat of fusion. } \\
& \Delta_{f} S=S_{l}-S_{S}=\frac{Q}{T_{m}}=\frac{\Delta H_{f}}{T_{m}}=\frac{\Delta f H}{T_{m}} \\
& T_{n i} \text { - melting } \\
& \text { temp. }
\end{aligned}
$$

2. Vaporization.
$\underset{\text { liquid }}{1 \text { mole of }} \xrightarrow[+q]{\text { vaporizat }^{\text {n. }}}$ gas
$+q=$ molar heat of vaporization or.
$\Delta_{V} H=$ latent heat of vaporization.

$$
\begin{array}{r}
\Delta s=s_{\text {gas }}-s_{\text {liquid }}=\frac{Q}{T_{b}}=\frac{\Delta_{v} H}{T_{b}} \quad T_{b} \text {-boiling. } \\
\Delta_{V} s=\text { Entropy of vaporization. }
\end{array}
$$

\longrightarrow fusion: $s \rightarrow l . \quad q=$ tie $\Delta s=$ tire. spontaneous.
\rightarrow Freezing: $l \longrightarrow s \quad q=-v e \quad \Delta s=-v e$ exothermic
\longrightarrow vaporization: $l \longrightarrow g$
\rightarrow condensation: $g \longrightarrow l$
$q=+v e \quad \Delta s=+v e$
$q=-v e \quad \Delta s=-v e \quad$ exothermic.
\# Importance of Entropy.
\rightarrow measure of discorderness/randomnéss/dispersion energy
\longrightarrow gives feasibility of a process.
$\left.\begin{array}{ll}s \longrightarrow l \longrightarrow g & \Delta s=+v e\end{array} \quad \begin{array}{c}\text { spontaneous. } \\ g \longrightarrow l \longrightarrow s\end{array}\right\}$ irreversible.
\longrightarrow Entropy, S - function of probability where the probability \uparrow entropy \uparrow
see fl).

$$
W \equiv e^{S / K_{B}}
$$

- Maxuetl-Boltzmann's law.

$$
K=\text { Boltzmann constant }=R / \mathrm{N}=\frac{8.314 \mathrm{~J} / \mathrm{K} . \mathrm{mol}}{6.02 \times 10^{23}}
$$

$$
K=1.38 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}
$$

\rightarrow Entropy is also referred as unavailable energy per unit temperceturn

$$
\therefore \quad S=\frac{\text { unvailable energy (U.A.E) }}{T} \quad T=\text { temp. }
$$

$$
\therefore U \cdot A \cdot E=T_{1} S
$$

* * * \& Important formulas for entropy * \& \# \&
$\Longrightarrow \Delta S=Q / T:$ clausius theorem \Rightarrow reversible/ equilibrium process $\Delta S_{u n i}=0$
$\Rightarrow d s=d q / d T:$ Clausius theorem \Rightarrow ioreversible/spontaneour process $\Delta s_{\text {univ }}=+v e$
$\Longrightarrow \quad$ process.
$\Delta S=n C_{x} \cdot \ln \left(\frac{T_{2}}{T_{1}}\right)+n R \ln \left(\frac{V_{2}}{V_{1}}\right)$

$$
\Delta S_{\text {uni }}>0
$$

$$
\Delta s=n C_{p} \cdot \ln \left(\frac{T_{2}}{T_{1}}\right)+n R \ln \left(\frac{P_{1}}{P_{2}}\right)
$$

\Rightarrow Adiabatic rev. process.

$$
\Delta S_{s y s t}=\Delta \delta_{\text {star }}=\Delta f_{\text {universe }}=0 .
$$

\Rightarrow isobaric process.

$$
\begin{aligned}
& \Delta s=n C_{p} \ln \frac{T_{2}}{T_{1}} \quad \Delta s=n C_{x} \ln \frac{T_{2}}{T_{1}} \\
& \begin{aligned}
\Longrightarrow \Delta S_{\text {mix }}=-R \sum_{i} n_{i} \ln x_{i} & =-R N \sum_{i} x_{i} \ln x_{i}=-2.303 N R \sum_{i} x_{i} \log x_{i}>0 \\
\Delta S_{\text {mix }} & =+ \text { vt }- \text { spontaneous. }
\end{aligned} \\
& \begin{aligned}
\Delta S_{\text {mix }}=-R \sum_{i} n_{i} \ln x_{i} & =-R N \sum_{i} x_{i} \ln x_{i}=-2.303 N R \sum_{i} x_{i} \log x_{i}>0 \\
\Delta S_{\text {mix }} & =+ \text { ie }- \text { spontaneous. }
\end{aligned} \\
& \Longrightarrow \Delta_{F} S=\frac{\Delta_{F} H}{T_{m}} \quad \Longrightarrow \Delta_{V} S=\frac{\Delta_{V} H}{T_{b}} \\
& \Rightarrow \Delta_{\text {sub }}=\frac{\Delta_{\text {sub }} H}{T_{\text {sub }}}=\frac{\Delta_{f} H+\Delta_{V} H}{T_{\text {sub }}} \quad \Rightarrow \quad S=K \cdot \ln W=2.303 \mathrm{k} . \log \mathrm{kl} . \\
& \Rightarrow \quad S=\frac{W \cdot A \cdot E}{T} \\
& \Delta s=n C_{p} \ln \frac{T_{2}}{T_{1}} \quad \Delta s=n C_{x} \ln \frac{T_{2}}{T_{1}}
\end{aligned}
$$

\Longrightarrow Adiabatic irreversible process.

$$
\begin{gathered}
\Delta S_{\text {system }}=\text { tie } \quad \Delta S_{\text {surrounding }}=0 \\
\Delta S_{\text {universe }}=+ \text { re }
\end{gathered}
$$

\Longrightarrow isochoric process
\Longrightarrow isothermal process.

$$
\begin{aligned}
& \Delta S=n R \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \Delta S=n R \cdot \ln \left(\frac{P_{1}}{P_{2}}\right)
\end{aligned}
$$

Third law of thermodynamics.
statement (1) As the temperature increases, rotational, translational and vibrational motion is also increases.

$$
\longrightarrow \text { Temp. } \uparrow \Longrightarrow\left\{\begin{array}{l}
\text { rotational motion } \\
\text { vibrational motion } \\
\text { translational motion }
\end{array}\right\} \begin{array}{r}
\uparrow \Rightarrow \text { disorder } \uparrow \Rightarrow \text { is }
\end{array} \begin{array}{r}
\Rightarrow \Delta S>0 \\
\end{array}
$$

$$
\begin{array}{r}
\rightarrow \text { Temp. } \downarrow . E \downarrow\left\{\begin{array}{c}
\text { rotational motion } \\
\text { translational motion } \\
\text { vibrational motion }
\end{array}\right\} \downarrow \Rightarrow \text { orderness } \neq \Delta \downarrow \\
\Rightarrow \Delta S<0
\end{array}
$$

$$
\longrightarrow T=0 \text { (absolute zero) } \Longrightarrow \begin{array}{r}
\begin{array}{l}
\text { the motion } \\
\text { stopped }
\end{array}
\end{array} \Longrightarrow \begin{gathered}
\text { No orderness } f \\
\text { no disorderness }
\end{gathered} \Longrightarrow \quad \$ \rightarrow 0
$$

statement (2) - The entropy of pure crystalline substance is zero at absolute zero temperature.

$$
\left\{\begin{aligned}
\lim s & \rightarrow 0 \\
T & =0(a b s o l u t e ~ z e r \theta)
\end{aligned}\right\}
$$

important $\left\{\begin{array}{l}\text { pent }\end{array} 1^{\text {st }}\right.$ law: internal energy concept
$D \rightarrow 3^{r d}$ lace : puts limitation on the value of entropy,
4) Application \rightarrow It is useful to determine absolute entropy off solid, liquid and gases at any temperature.
\longrightarrow It is useful to determine standard entropy change of a chemical reaction.
\# Determination of absolute entropy of solid.
Example (1). consider a solid having entropies at two different temp.

Example (2) Temp. $O K \longrightarrow T K$.

$$
\text { entropy } S_{O K} \longrightarrow S_{T K}
$$

According to second laue of thermodynamics.

$$
\begin{aligned}
d S & =\frac{d Q}{T} \\
\therefore \quad \frac{d S}{d T} & =d Q \frac{d H}{T d T}=\frac{d Q}{d T} \times \frac{1}{T}=C_{p} / C_{V} \times \frac{1}{T} \quad \therefore \quad Q=C \Delta T \\
& \therefore d s=\frac{d Q}{\Delta T} \\
& \therefore \quad \begin{array}{c}
d P \\
T
\end{array}
\end{aligned}
$$

\rightarrow taking integration on both side

$$
\begin{aligned}
& \int_{S_{0 K}}^{S_{T K}} d S=\int_{0 K}^{T K} C_{p} \cdot \frac{d T}{T} \\
& {\left[S_{T K}-S_{0 K}\right]=\int_{0}^{T} C_{p} \cdot \frac{d T}{T}=\Delta S=S_{T} \quad\left(\because S_{0}=0\right)} \\
& \therefore \Delta S=S_{T}=\int_{0}^{T} \frac{d T}{T} C_{p}=\int_{0}^{T} d(\ln T) C_{P} \quad\left(\because S_{0 K}=0 \quad \mathbb{W r}^{+d} \text { lawn }\right) \\
& \frac{d x}{x}=\ln x . \\
& \frac{d(\ln x)}{d x}=\frac{1}{x}
\end{aligned}
$$

\# Determination of absolute entropy of liquid.
Consider a liquid chose entropy is determined at TK Temp. limits tends to OK $\longrightarrow 1 \mathrm{~K}$.
total entropy change, $\Delta S=\Delta S_{1}+\Delta S_{2}+\Delta S_{3}$

$$
\left[s_{T}-s_{0}\right]=\int_{0}^{T_{m}} c_{p} \cdot(d \ln T)+\frac{\Delta f H}{T_{m}}+\int_{T_{m}}^{T} c_{p} \cdot d(\ln T) .
$$

According to $3^{\text {rd }}$ lam, $S_{0}=0$

$$
\therefore S_{T}=\int_{0}^{T_{m}} c_{p_{(5)}} d(\ln T)+\frac{\Delta_{f} H}{T_{m}}+\int_{T_{m}}^{T} c_{p} \cdot d(\ln T)
$$

* Determination of absolute entropy of gas :-

Consider a gas whose entropy is determined at T, then
gas limit: $S_{0} \longrightarrow S_{T}$
Temp. limit $\quad O K \longrightarrow T K$.

$$
\begin{aligned}
& \text { - total entropy change }=\Delta S_{1}+\Delta S_{2}+\Delta J_{3}+4 J_{4}+\Delta د_{5}-J_{5}-J_{0} \text {. } \\
& \therefore\left[S_{T}-S_{0}\right]=\int_{0}^{T_{m}} C_{P(s)} \cdot d(\ln T)+\frac{\Delta_{f} H}{T_{m}}+\int_{T_{m}}^{T_{b}} C_{P(1)} \cdot d(\ln T)+\frac{d v}{d b}+\int_{T_{b}}^{T} C_{P(g))} \cdot d(\ln T)=S_{T} \\
& \binom{\text { because } \cdot S_{T}=S_{0}=S_{T}}{\because S_{0}=0 \quad \text { ac } \quad 3^{\text {rd }} \text { lam }}
\end{aligned}
$$

\# Determination of standard entropy change of a chemical reaction..
Standard entropy $\left(5^{\circ}\right)$. Entropy of 1 mole of pure substance measured at 1 atm pressure \& $25^{\circ} \mathrm{C}$
For a reaction. $A+B \longrightarrow C+D$.
standard entropy change.

$$
\begin{aligned}
\Delta S^{0} & =\sum\left(S_{P}^{0}-S_{R}^{0}\right) \\
\therefore \Delta S^{0} & =\left(S_{C}^{\Phi}+S_{D}^{0}\right)-\left(S_{A}^{0}+S_{B}^{0}\right)
\end{aligned}
$$

\longrightarrow Similarly for reaction.

$$
\begin{gathered}
a A+b B \longrightarrow c C+d D \ldots \\
\Delta S^{\circ}=\left[c \cdot S_{c}^{\circ}+d \cdot S_{d}^{0}\right]-\left[a S_{a}^{0}+b \cdot S_{b}^{0}\right]
\end{gathered}
$$

Que-1 Heat capacity of a species is independent of T if it is
(a) tetratomic
(b) triatomic.
(c) monoatomic
option (c) is correct answer
(d) diatomic
\rightarrow Due to only translation motion possible for monoatomic species $K \cdot E \propto T$
Whatever T supplies, i.e. utilizes \& increases translational motion. wheras for polyatomic gases in $a d d^{n}$ to translational motion, rotational and vibrational motions are also possible.

At particular temp. T, after increasing T, rotational motions start. so then increasing is more because some heat is used For increasing T \& some heat is used to rotationational motion. In the same curdy to observe vibration motion, more amount of heat is required.

Que-2 The criteria for spontaneity of a process is.
(i) $\Delta S_{\text {syst }}>0$
ii) $\Delta s_{\text {surrounding }}>0$
(iii) $\Delta S_{\text {syst }}+\Delta S_{\text {surrounding }}>0$
(iv) $\Delta s_{\text {system }} \mp \Delta s_{\text {surrounding }} \gg 0$
$\begin{aligned} \Longrightarrow \Delta S_{\text {uni }} & >0 \text { i.e. tie } \\ \therefore \Delta S_{\text {Syst }}+\Delta S_{\text {surrounding }} & >0 \text { criterion for spontaneity of reaction. }\end{aligned}$
Que-3 The number of configurations of state according to Boltzmann formula is
(i.) $e^{S / K_{B}}$
(ii) $e^{-s / K_{B}}$
(iii) $e^{-E / K_{B}}$
(iv) $\mathrm{e}^{-\Delta G / K_{B}}$
$\Rightarrow \quad S=K_{B} \cdot \ln W . \quad \therefore$ option (i) is the correct answerer
$\therefore|x|=e^{S / K_{B}} \quad$ Entropy is a function of probability.

Que-4 The direct conversion of $A \longrightarrow B$ is difficult, hence it is carried out, by the following path shown: $A \Longrightarrow D \longrightarrow C \rightarrow D \rightarrow R$ given. $\Delta S_{(A \rightarrow C)}=50$ units $\Delta S_{(C \rightarrow D)}=30$ units $\Delta S_{(B \rightarrow D)}=20$ unit. then $\quad \Delta S_{(A \rightarrow B)}$ is ?
i) 60 units
ii) 100 units.
iii) -60 units
iv) -100 units
$\Rightarrow A \xrightarrow{50} C \xrightarrow{30} B{ }^{20} B$

$$
\Delta S_{(A \rightarrow B)}=50+30-20=60 \text { unit }
$$

option (1) 60 unit is the correct answer.

Q4e-5 1 mole of $\mathrm{CO}_{2}, 1$ mole of $\mathrm{N}_{2}, 2$ moles of O_{2} were mixed at 300 K , then entropy of mixing is.

$$
\begin{aligned}
\Longrightarrow \quad & \Delta S_{\text {mix }}=-2.303 N R \sum x_{i} \log x_{i} \\
= & -2.303 \times 4 \times 2\left(0.25 \log \frac{1}{4}+0.25 \log \frac{1}{4}+0.50 \log 0.50\right) \\
= & -2.303 \times 8(0.25 \times-0.6+0.25 \times-0.6+0.50 \times-0.30) \\
= & -2.303 \times 8(-0.150-0.150-0.150)=-18.42 \times(-0.75) \\
= & +13.815 \mathrm{cal} / \mathrm{K}=
\end{aligned}
$$

\Longrightarrow At isobaric condition.
$\therefore \Delta S=5 R \ln 2$
$C_{p}=5 / 2 R$.

$$
\begin{aligned}
\Delta S & =n C_{p} \cdot \ln \frac{T_{2}}{T_{1}} \\
& =2 \times \frac{5}{2} \mathrm{Rln}\left(\frac{600}{300}\right)
\end{aligned}
$$

$$
\Delta s=5 R \ln 2
$$

Que-7 For the same data given in above problem, the process is carried out at constant volume.. Calculate the entropy change.
$\Longrightarrow \quad C_{V}=3 / 2 R, \quad$ isobaric process.

$$
\begin{aligned}
\therefore \Delta S={ }_{n} C_{v} \ln \frac{T_{2}}{F_{1}} & =2 \times \frac{3}{2} R \cdot \ln \left(\frac{600}{300}\right)=3 R \cdot \ln 2 . \\
\Delta S & =3 R \cdot \ln 2
\end{aligned}
$$

Que- 8 When one mole of an ideal gas is compressed to half of it's initial volume and simultaneously heated to twice it's initial temperature, the change in entropy of the gas.
i) $C_{p} \ln 2$
(ii) $C_{v} \cdot \ln 2$
〈iii〉
$R \cdot \ln 2$
Lix> $\left(C_{Y}-R\right) \ln 2$.
$\Longrightarrow \quad n=1 \mathrm{~mole}$
$V_{1}=x_{6}$
$v_{2}=x / 2$
$T_{1}=m$
$T_{2}=2 m . \quad=C_{v} \ln 2+R \cdot \ln \frac{1}{2}$
Que-9 Calculate entropy change when 2 moles of an ideal gas expands reversibly from initial volume of $2 \mathrm{dm}^{3}$ to final volume of $20 \mathrm{dm}^{3}$ at constant T. of $29^{\prime} 8 \mathrm{~K}$.
\Rightarrow condition : isothermal reversible expansion.

$$
\begin{aligned}
& n=2 \\
v_{1} & =2 \mathrm{dm}^{3} \\
& v_{2}=20 \mathrm{dm}^{3} \\
\therefore \Delta S= & D R \cdot \ln \frac{v_{2}}{v_{1}} \\
= & 2 \times 2 \ln \frac{20}{2}=2.303 \times 4 \times \log 10
\end{aligned}
$$

$$
\begin{aligned}
\therefore \Delta S & =2.303 \times 4 \\
& =9.212 \mathrm{cal}, \mathrm{~K} \\
\text { or } \Delta S & =9.212 \times 4.184 \mathrm{~J} / \mathrm{K} \\
& =38.54 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

Que-10. Calculate $\Delta 5$ when 5 moles of an ideal gas expands from initial pressure of 10 atm to final pressure of 1 ctm . at constant temp.

$$
\begin{array}{l|l}
A=5 \mathrm{~mol} . \\
T-\text { constant } . \\
P_{r}=10 \mathrm{~atm} .
\end{array} \left\lvert\, \begin{aligned}
\therefore & \therefore S=n R \cdot \ln \frac{P_{1}}{P_{2}} \\
& =2.303 R \operatorname{lag} 10 \\
& =2.303 \times 2 \times 5 \times 1
\end{aligned}\right.
$$

$$
\begin{aligned}
& \text { isothermal expansion } \\
& \therefore \Delta S=n R \cdot \ln \frac{P_{1}}{P_{2}} \\
&=2.303 R \log 10 \\
&=2.303 \times 2 \times 5 \times 1
\end{aligned} \quad \begin{aligned}
\Delta S & = \\
& =23.03 \times 4.184 \mathrm{~J} / \mathrm{K} \\
& =96.36 \mathrm{~J} / \mathrm{K} . \mathrm{K}
\end{aligned}
$$

Que-11 The latent heat of vaporization of water is $9720 \mathrm{cal} / \mathrm{mol}$. what is the entropy change in the vaporization of 1 gram of water at it's boiling point

$$
\begin{aligned}
& \Longrightarrow \quad \Delta_{\text {rap }} H=9720 \mathrm{cal} / \mathrm{mol} . \\
& T_{b}=373 \mathrm{~K} \\
& \Delta s=\frac{\Delta_{\text {rap }} H}{T_{b}}=\frac{9720}{373}=26.05 \mathrm{cal} / \mathrm{K}-\text { for } 1 \mathrm{~mole} .
\end{aligned}
$$

$$
n=\frac{m}{M_{1}}=\frac{1}{18}=0.056
$$

$$
\therefore \Delta s_{\text {rap }}=26.05 \times 0.056
$$

Que-12 The latent heat of fusion of ice is $80 \mathrm{cal} / \mathrm{gram}$. What is ΔS_{f} for 1 mole of ice at it's melting point.

1 gram. solid \longrightarrow liquid $\quad \Delta_{f} H=+y e$.

$$
\begin{aligned}
& \overrightarrow{\Delta_{S}}=\frac{\Delta_{\text {Gus } H}}{T_{m}}=\frac{80}{273}=0.29 \mathrm{Ral} / \mathrm{K} \cdot \text { gram. } \\
& \Delta_{f_{u s}}=0.29 \times 18=5.27 \mathrm{cal} / \mathrm{K} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Que-13 The latent heat of fusion of ice is $180 \mathrm{cal} /$ gram. What is the change in entropy of fusion for 1 mole of ice at it's melting point.

$$
\begin{aligned}
& \Delta_{f} H=180 \mathrm{cal} / \mathrm{gram} . \quad T_{m}=273 \mathrm{k} . \\
& \Delta_{f} S=\frac{\Delta_{f} H}{T_{m}}=\frac{180}{273}=0.66 \mathrm{cal} / \mathrm{gram} \cdot \mathrm{~J} \\
& \Delta_{f} S=0.66 \times 18 \mathrm{cal} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~mol}^{-1}=11 \mathrm{cal} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Sue- 14 moles of each $\mathrm{H}_{2} \& \mathrm{~N}_{2}$ are mixed at $25^{\circ} \mathrm{C}$ af 1 atm pressure. Calculate the entropy of mixing.

$$
\Rightarrow \Delta S_{\text {mix }}=-\quad-R \bar{\Sigma} n_{i} \ln x_{i} \left\lvert\, \begin{aligned}
\Delta S_{\text {mix }} & =10 \times 8.314 \times 2.303 \times 0.3010 \\
& =-R\left(5 \ln \frac{1}{2}+5 \ln \frac{1}{2}\right) \\
& =-R(-5 \ln 2-5 \ln 2) \\
& =10 R \cdot \ln 2 .
\end{aligned}\right.
$$

Que-15. What amount of ice will remain when 52 grams of ice is added to 100 grams of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$. [specific heat capacity of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$ is $1 \mathrm{cal} / \mathrm{gm}$ or $4.18 \mathrm{~J} / \mathrm{gram}]$ and latent heat of fusion of ice is $80 \mathrm{cal} /$ gram.

Que-1 bloch of the following pair has the higher critropy per mole of substance.
(a) H_{2} at $25^{\circ} \mathrm{C}$ in $\mathrm{vol}^{\mathrm{m}}$ of 10 L (or) x
H_{2} at $25^{\circ} \mathrm{C}$ in vol of 50 L .
(b) O_{2} at $25^{\circ} \mathrm{C}$ and 1 atm pressure (O)
O_{2} at $25^{\circ} \mathrm{C}$ and 10 atm pressure.
(C) H_{2} at $25^{\circ} \mathrm{C}$ and 1 atm pressure (or \times H_{2} at $100^{\circ} \mathrm{C}$ and 1 atm pressure.
(d) CO_{2} at STP
CO_{2} at $100^{\circ} \mathrm{C}$ and 0.1 atm .

Que-2 For water, $\Delta_{\text {rap }} H=41 \mathrm{~kJ} / \mathrm{mol}$, the molar entropy of vaporization at 1 atm is approximately $\quad \Delta_{\text {rap }} 5=$?

1) 410 JR $\mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
2) $110 \quad \mathrm{~J} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
3) 41 W. $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
4) $11 \mathrm{~J} \cdot \mathrm{~K}^{-1}$. mol^{-1}.
$\Longrightarrow \quad \Delta S_{\text {rap }}=\frac{\Delta \operatorname{vap} H}{T_{b}}=\frac{41000}{373}=109.91 \approx 110 . \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mal}^{-1}$.

Q4e-3 $\quad n_{\mathrm{CO}_{2}}=1 \mathrm{~mol}, \quad n_{\mathrm{N}_{2}}=1 \mathrm{~mol}, n_{\mathrm{O}_{2}}=2 \mathrm{~mole}$ are mixing at 300 K . The entropy of mixing is, $\Delta_{\text {mix }} S=$?
i) $6 R \ln 2$

〈iv〉 $\quad 16 R \cdot \ln 2$
ii) $8 R \cdot \ln 2$
iii) $8 R \cdot \ln (2 / 300)$

$$
\left.\begin{array}{rl}
\Rightarrow \Delta_{\text {mix }} S & =-R\left(1 \cdot \ln \frac{1}{4}+1 \cdot \ln \frac{1}{4}+2 \cdot \ln \frac{1}{2}\right) \\
& =-R\left(2 \ln \frac{1}{4}+2 \ln \frac{1}{2}\right) \quad \Delta_{\text {mix }} S
\end{array}\right)=-R(-6 \ln \cdot 2)=6 R \cdot \ln 2 .
$$

Que-4 When 2 moles of an ideal gas heated from 400 K to 1200 K at constant pressure. The change in entropy of the gas is.
(1) $3 / 2 R \cdot \ln 3$ (ii) $-3 / 2 R \cdot \ln 3$
(iii) $5 R \cdot \ln 5$
xiv> $\quad 5 / 2 R \cdot \ln 3$.

$$
\Delta S=n C_{p} \ln \frac{T_{2}}{T_{1}}=2 \times \frac{5}{2} R \ln \frac{1400}{400}=\underline{ }^{5 R \cdot \ln }{ }^{3}
$$

Que-5 The latent heat of fusion of ice is $80 \mathrm{cal} / \mathrm{gram}$. What is the entropy change in fusion of 1 mole of ice at it's melting point
i) $10.6 \mathrm{cal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
ii) $-5.3 \mathrm{cal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
iii) $5.3 \mathrm{cal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
iv) $-10.6 \mathrm{cal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
\Rightarrow

Que-6 Which of the following is correct for endothermic process.
(a) $\Delta H<0, \Delta S_{\text {syst }}<0, \Delta S_{\text {sure }}>0$
(b) $\Delta H>0, \Delta S_{\text {system }}>0, \Delta S_{\text {sum }}<0$
(c) $\Delta H>0, \Delta S_{\text {system }}>0, \Delta S_{\text {sure }}>0$.
(d) $\Delta H>0, \Delta S_{\text {system }}>0, \Delta S_{\text {sur r }}=0$

Que-7 for the reaction
$\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow{ }^{2 u}(\mathrm{~g})$, which is true?

	ΔH	Δs
i)	$+v e$	$+v e$
ii)	-re	$-v e$
iii)	tee	-ve
ivy	$-v e$	$+v e$.

$$
\Longrightarrow \quad \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}_{(g)} \quad \Delta H=+v e, \Delta s=+v e
$$

$$
\therefore \text { option ii is the correct answer }
$$

Que-8 When solid $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is dissolved in water at $25^{\circ} \mathrm{C}$. The temp. of solution decreases, Then $\Delta H, \Delta S$
i) -we, -we. ii -re, tie
iii) tie, -we iv +ie, tee.
$\Longrightarrow \quad \mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\text { aq. }} \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}{ }^{-} \quad \Delta H=-v e$ (heat in evolved by spstem) $\Delta S=$ tue \therefore option (ii) is the correct answer.

Que-9. Hour much energy must be supplied to change 36 gram of ice at $0^{\circ} \mathrm{C}$ to mater at $25^{\circ} \mathrm{C} \quad C_{p} \cdot$ liq.) $=4 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{gm}^{-1} \quad \& \quad \Delta_{f_{H} H}=6.01 \mathrm{k} \cdot \mathrm{mol}^{-1}$.
i) 12 kJ
iii) 9.54 kJ
ii) 15.62 kJ .
iv) 22 kJ .

Trucant's rule.

\rightarrow Water show deviation due to presence of H -bonding in liquid state.

\# Tephigraph

Graph of entropy (δ) $V_{S}(T)$ is called tephigraph.
i) $T \uparrow \Rightarrow$ all degree of freedom \uparrow. \Rightarrow disorderness \uparrow

$$
\Rightarrow S \uparrow \& \Delta s>0 \text {. or tie. }
$$

ii) $T \downarrow \Rightarrow$ all degrees of freedom \downarrow.

$$
\begin{aligned}
& \Rightarrow \text { orderness } \downarrow . \\
& \Longrightarrow s \downarrow \& \Delta s<0 \quad \text { or }-v e
\end{aligned}
$$

iii) $T=O K \Longrightarrow$ disorclorness stopped.

$$
\Rightarrow \quad s=0
$$

\# Problem with determination of absolute entropy of solid

$$
\text { pot of } C_{p} / T \quad V_{s} T \text {. }
$$

\rightarrow The area in between $0 \& T$ gives the value of integral.

 calculate c_{p} value upto as low to T^{*} as possible [usually unto $5^{5} k$] and C_{p} at O absolute zero is obtained by with extrapolation

$$
\begin{aligned}
& S_{T}=\int_{0}^{T} \frac{C_{p}}{T} d T \\
& S_{T}=\int_{0}^{T_{T}^{*}} \frac{C_{p}}{T} d T+\int_{T_{*}^{*}}^{T} \frac{C_{p}}{T} d T \\
& 0<T^{*}<15 k
\end{aligned}
$$

\rightarrow First integral can be can be calculated by Debye T^{3} laws.
i.e. $\quad C_{p}=a \pi^{3} \mid$ near absolute zero: Debye lam cuthore $a=$ constant.
$\left\{\begin{array}{l}\text { Debye law/Debye model, correctly predicts the low low } \\ \text { temperature dependence of the heat capacity (Cp) which } \\ \text { is proportional to } T^{3} \text { - Debye } T^{3} \text { lam }\end{array}\right\}$

$$
\begin{aligned}
& S_{T}=\int_{0}^{T *} \frac{a T^{3}}{T} d T+\int_{T^{*}}^{T} \frac{c_{p}}{T} d T=\int_{0}^{T} a T^{2} d T+\int_{T^{*}}^{T} \frac{C_{p}}{T} d T \\
&=a \int_{0}^{T} T^{2} d T+\int_{T^{*}}^{T} \frac{c_{p}}{T} d T \\
&=a\left[\frac{T^{3}}{3}\right]_{0}^{T^{*}}+\int_{T^{*}}^{T} \frac{C_{p}}{T} d T \\
&\left.=a \cdot \frac{T^{*} 3}{3}-0\right]+\int_{T}^{T} \frac{C_{p}}{T} d T
\end{aligned}
$$

$$
\therefore S_{T}=\frac{d \cdot T^{* 3}}{3}+\int_{T *}^{T} \frac{C_{p}}{T} d T
$$

\Rightarrow It is observed in monoatomic gases that. C_{p} is independent
of temperature T
\longrightarrow For diatomic molecules, supplied temp. T causes translational, rotational \& vibrational motion to take place.
\longrightarrow Trafitational, vibrational fotational motions takes place at a particular temperature after only.

Que-1 III ${ }^{\text {od }}$ law of thermodynamic leads to
(a) concept of entropy.
(b) concept of internal energy.
(c) concept of free energy.
(d) The limitation on the value of entropy of a crystalline solid- (pure) \Longrightarrow At absolute zero \rightarrow all motion stopped \rightarrow no orderness or disardness $\rightarrow \Delta s \rightarrow 0$ This is $3^{\text {od }}$ pale.
\therefore option (d) is the correct answer.
Que-2 $A+B \longrightarrow C+D$ reaction haves standard entropies of $A, B, C \& D$ are 40, 60, 70 and 50 cal/K.mol respectively. In terms of entropy change predict the reaction is spontaneous or not?

$$
\begin{aligned}
& \Delta s=(70+50)-(40+60) \\
& \Delta s=120-100 \\
& \Delta s=20 \mathrm{cal} / \mathrm{k} \cdot \mathrm{~mol}
\end{aligned}
$$

$$
\because \Delta s=+20 \mathrm{cal} / \mathrm{k} \cdot \mathrm{~mol}^{-1}
$$

$$
\Delta s>0
$$

\rightarrow indicates that the reactions is spontaneous

Que-3 How much heat is required to change 10 grams of ice at $0^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C} . \Delta_{\text {Gus }} H=8 \mathrm{cal} / \mathrm{gm}$ \& $\Delta_{\text {rap }} H=540 \mathrm{cal} /$ gram respectively, with given that C_{5} for water is $1 \mathrm{cal} / \mathrm{K}$.gram.

Que-4 For a perfectly crystalline solid $c_{p}=a T^{3}$ where ' a ' is constant if $c_{p}=0.42 \mathrm{~J} / \mathrm{k} . \mathrm{mol}$ at 10 K , molar entropy at 20 K is
(i) $0.42 \mathrm{~J} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(ii) $0.14 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
(iii) 1.12 J. K^{-1}. mol :-1

〈iv〉 Zero.
$\Rightarrow \Delta S=S_{20 K}=\frac{a T^{3}}{3}+\int_{10}^{20} \frac{C_{p}}{T} d T \left\lvert\, \begin{aligned} S_{20 K} & \left.=\frac{c_{p}}{3}+\frac{2 a t^{3}}{3} \right\rvert\, \quad S_{20 K}=0.42 J / k \cdot m o l \\ & =\frac{c_{p}+2 c_{p}}{3} \\ & =\frac{c_{p}}{3}+\int_{p} \frac{a T_{p} p^{2}}{T} d T \\ & \therefore \text { option (i) is the correct }\end{aligned} \quad \begin{aligned} & \text { answer. }\end{aligned}\right.$
$=\frac{C_{p}}{3}+\int_{10 k}^{20 k} a T^{2} d T$
$\longrightarrow A$ absolute zero.
$\lim S \longrightarrow 0 . \quad 3^{r d}$ law - for pure crystalline solid.
\longrightarrow absolute entropy of solid.

$$
\Delta S=S_{T}=\int_{0}^{T} \frac{C_{p}}{T} d T=\int_{0}^{T} C_{p} \cdot d(\ln T)
$$

\rightarrow absolute entropy of liquid.

$$
\begin{aligned}
& \text { ute entropy of liquid. } \\
& \Delta S=S_{T}=\int_{0}^{T_{m}} C_{p(s)} \cdot \frac{d T}{T_{m}}+\frac{\Delta f_{u s} H}{T_{m}}+\int_{T_{m}}^{T} C_{p(a)} \frac{d T}{T}
\end{aligned}
$$

\longrightarrow absolute entropy of gras.

D

$$
\Delta s=S_{T}=\int_{0}^{\text {absolute entropy }} C_{p(S} \cdot \frac{d T}{T_{m}}+\frac{\Delta_{\text {pus }} H}{T_{m}}+\int_{T_{m}}^{T_{b}} C_{p(a)} \cdot \frac{d T}{T}+\frac{\Delta_{\text {rap }} H}{T_{b}}+\int_{T_{b}}^{T_{\text {g }}} C_{\text {g }} \frac{d T}{T}
$$

1
\longrightarrow standard entropy change for a chemical reaction.

$$
\begin{aligned}
a A & +b B \\
\Delta_{\gamma} S^{\theta} & =\left[c S_{C}^{\circ}+d S_{D}^{0}\right]-\left[a S_{A}^{0}+b S_{B}^{0}\right]
\end{aligned}
$$

\rightarrow problem with calculation of absolute entropy of solid.
C_{p} cannot be calculate exactly at $\dot{\theta}^{\circ}$ e. absolute zero
$c p$. can be calculated upto T^{*} temp of gives exact value \& below T^{*}, C_{p} calculation is extrapolated.

$$
S_{T}=\frac{a T^{* 3}}{3}+\int_{T^{*}}^{\pi} C_{p} \cdot \frac{d \pi}{T}
$$

\# Gibbs's free energy (G) and Helmholtz free energy (A)

$$
\begin{gathered}
(T \cdot E) \quad \frac{\text { total }}{\text { energy }}=\frac{\text { Available }}{\text { energy }}(A \cdot E)+\frac{\text { unavailable }}{\text { energy }}(U \cdot A \cdot E) \\
\text { Available energy }(A \cdot E)=T \cdot E \cdot-U \cdot A \cdot E .
\end{gathered}
$$

at constant pressure.
at constant volume
$A \cdot E=H-T S=G$ - Gibbs's free energy
APE. $=U-T . S=A$. - Helmholtz free energy.

$$
\begin{aligned}
& \therefore \quad A=V_{1} \quad A=U-T \cdot S \\
& \text { Helmholtz energy }
\end{aligned}
$$

Gibbs's free energy
\Rightarrow Relation between $A \& G$

$$
\begin{aligned}
G & =H-T S=U+P V-T S \\
\therefore G & =(U-T S)+P V . \\
\therefore G & =A+P V .
\end{aligned}
$$

\Rightarrow properties of $A \& G$
\rightarrow exact values of $A \& G$ are impassible to calculate but $\Delta A \& \Delta G$ are.
\longrightarrow extensive properties
\rightarrow state functions.
\rightarrow free energies to do useful work. at constant volume \& at constant pressure
\Rightarrow Variation of G with temperature (T) and pressure (P)

$$
\begin{gathered}
d G=? \\
G=H-T S \\
G=U+P V-T S .
\end{gathered}
$$

differentiating on both sides

$$
\begin{aligned}
& d G=d U+d(p V)-d(T S) \\
& d G=d U+p d V-T d S+V d p-S d T \\
& \therefore d G=d Q=d Q \\
& \therefore \quad d G=V d p-S d T \\
& \text { At constant }{ }^{6} p, \quad \Longrightarrow d P=0 \\
& \therefore d G=-S d T \\
& \therefore \frac{d G}{d T}=-S-\text { complete change } \\
& \therefore\left(\frac{\partial G}{\partial T}\right)_{P}=-S
\end{aligned}
$$

$$
\therefore d G=d Q=C Q+V d p-S d T
$$

According to $I^{s t}$

$$
\begin{align*}
-d U & =d Q-P d V \\
\therefore d U+P d V & =d Q \tag{1}
\end{align*}
$$

According to $2^{\text {nd }}$ law.

$$
\begin{equation*}
d S=\frac{d Q}{T} \quad \therefore-d Q=-T d S \tag{2}
\end{equation*}
$$

$$
\text { i.e. } \quad G=f(p, T)
$$

$\therefore \frac{d G}{d T}=V$ - complete change
$\therefore\left(\frac{\partial G}{\partial P}\right)_{T}=V$ partical change
\Longrightarrow Variation of A with 1 and v

$$
\begin{aligned}
& G=A+P V \\
& d A=? \\
& d G=d A+d(P V) \\
& V d P-S d T=d A+P d V+V d P \\
& \therefore d A=-P d V-S d T \\
& A=f(T, V)
\end{aligned}
$$

$$
\text { 1) at constant temperature ' } T \text { ' } \Longrightarrow d T=0
$$

$$
\begin{aligned}
& d A=-p d V . \\
& \therefore \quad\left(\frac{d A}{d V}\right)_{T}=-P . \quad \text { complete change }
\end{aligned}
$$

$$
\text { or }\left(\frac{\partial A}{\partial N}\right)_{T}=-P \text { partial change. }
$$

2). at constant volume ${ }^{\prime} V{ }^{\prime} \Longrightarrow d V=0$.

$$
\begin{aligned}
& \therefore d A=-5 d T \\
& \therefore\left(\frac{d A}{d T}\right)_{V}=-5
\end{aligned}
$$

- complete change

$$
\therefore\left(\frac{\partial A}{\partial T}\right)_{V}=-S \text { partial change }
$$

\Rightarrow Change of G at constant ' T ' for an ideal gas.

$$
\text { 洮 } \begin{aligned}
G & =H-T S \\
\text { i.e. } \quad \Delta G & =\Delta H-T \Delta S .
\end{aligned}
$$

at constant temp. (T)

$$
\begin{aligned}
& \Delta G= 0-T \Delta S . \quad\left(\begin{array}{r}
\because \Delta H=n C_{p} \Delta T=0 \\
\\
\text { at } \cdot T=\text { constant }) .
\end{array}\right. \\
& \therefore \Delta G=-T \Delta S \quad \text { at constant }{ }^{6} T \\
& \therefore \quad \because \\
& \therefore \Delta G=-\operatorname{Tn} R \ln \frac{V_{2}}{V_{1}}-\left(\because \Delta S=n R \ln \frac{V_{2}}{V_{1}}-\text { at constant } T\right. \\
& \therefore \Delta G=-n T R \ln \frac{V_{2}}{V_{1}}=-2.303 n R T \log \frac{V_{2}}{V_{1}}
\end{aligned}
$$

$O R$

$$
\Delta G=-n R T \ln \frac{P_{1}}{P_{2}}=-2.303 n R \pi \log \frac{P_{1}}{P_{2}}
$$

\Rightarrow change of ' A ' at constant ' T ' for am ideal gas

$$
\begin{aligned}
A & =U-T \cdot S \\
\Delta A & =\Delta U-T \Delta S
\end{aligned}
$$

at constant $T \quad \Delta A=\Delta U-T \Delta S$

$$
\begin{aligned}
\Delta A & =0-T \Delta S \quad\left(\because \quad \Delta U=n C_{v} \Delta T=0 \quad \text { at const } T^{\prime}\right) \\
\Delta A & =-T \Delta S \\
\therefore \Delta A & =-T n R \ln \frac{P_{1}}{P_{2}}
\end{aligned}
$$

$$
\Delta A=-n R T \ln \left(\frac{v_{2}}{v_{1}}\right)=-2.3003 n R T \log \left(\frac{v_{2}}{v_{1}}\right)
$$

$$
\Delta A=-n R T \ln \left(\frac{P_{1}}{P_{2}}\right)=-2.303 n R T \log \left(\frac{P_{1}}{P_{2}}\right)
$$

Some important Formulas.
$\longrightarrow G=H-T S$

$$
\Delta G=\Delta H-T \Delta S .
$$

$\rightarrow \quad A=U-T S$
$\Delta A=\Delta U-T \Delta S$
$\rightarrow \quad G=A+P V$

$$
\Delta G=\Delta A+p \Delta V+V \Delta p .
$$

\rightarrow variation of G with $T \& p$.

$$
d G=V d P-S d T \quad G=f(T, P)
$$

at constant ' T '
at constant 'e'

$$
\left(\frac{d G}{d P}\right)_{T}=V \quad \text { or }\left(\frac{\partial G}{\partial P}\right)_{T}=V
$$

$$
\left(\frac{d G}{d T}\right)_{p}=-S \quad \underline{\underline{o r}} \quad\left(\frac{\partial G}{\partial T}\right)_{p}=-S
$$

\rightarrow variation of A with $T \& V$.

$$
d A=-P d V-S d T
$$

$$
A=f(T, P)
$$

$$
\text { at constant ' } T \text { ' }
$$

$$
d A=-P d V
$$

$$
\frac{\text { at constant ' } V \text { ' }}{d A=-5 d T}
$$

$$
\left(\frac{d A}{d V}\right)_{+}=-P \quad \text { or }\left(\frac{\partial A}{\partial V}\right)_{T}=-P \quad\left(\frac{d A}{d T}\right)_{V}=-s \quad \text { or } \quad\left(\frac{\partial A}{\partial T}\right)_{V}=-s
$$

\rightarrow change of G at constant T for an ideal gas.

$$
\Delta G=-n R T \ln \left(\frac{v_{2}}{v_{1}}\right)=-n R T \cdot \ln \left(\frac{p_{1}}{p_{2}}\right)=-2.303 n R T \cdot \log \left(\frac{v_{2}}{v_{1}}\right)=-2.303 n R T \log \left(\frac{p_{1}}{p_{2}}\right)
$$

\rightarrow change of A at constant T for an ideal gas.

$$
\Delta A=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)=-n R T \ln \left(\frac{P_{1}}{P_{2}}\right)=-2.303 n R T \log \left(\frac{V_{2}}{V_{1}}\right)=-2.303 n R T \log \left(\frac{P_{1}}{P_{2}}\right)
$$

S criteria for reversible and irreversible process.
\rightarrow Consider a small change of state in the system reversibly by absorption of $d Q$ amount of heat from surrounding then,

$$
\begin{equation*}
d S=\frac{d \text { Prev }}{T} \tag{1}
\end{equation*}
$$

\longrightarrow consider some change of state is brought irreversible.
\rightarrow According to first law.

$$
\begin{aligned}
& d U=d Q+d W \\
& d U=d Q-P d V \\
& d Q=d U+P d V
\end{aligned}
$$

$>$: indicates jrreversible/spontaneous process.
$=$: indicates rexersible/equilibrium process.

$$
\Rightarrow \quad T d s \geqslant d u \neq P d V=d H
$$

\# Conditions for spontaneity and equilibrium w.r.t. U, H, S, G, A.
Clausius unequality $\Rightarrow T d s \geqslant d U+P d V$.

1) At constant S \& V.

$$
0 \geqslant d u \text { i.e. } \quad d U \leq 0 \quad(d U)_{s, v} \leq 0
$$

$d U<0$: spontaneous $d U=0$: equilibrium
2) at constant U \& V.

$$
\operatorname{Tds} \geqslant 0 . \quad \text { i.e. } \quad d s \geqslant 0 \quad \text { i.e. }(d s) u, v) \geqslant 0
$$

$d s>0:$ spontaneous $\quad d s=0$: equilibrium.
3) at constant ' P ' \& ' s '

$$
\begin{aligned}
& d H=d U+P d V . \quad \text { i.e. } T d s \geqslant d H \\
& d H \leqslant 0 \quad \text { i.e. } \quad(d H)_{p, s} \leqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { frey }>\text { kor } \\
& \text { daren }>\text { dior. } \\
& \therefore \frac{d \text { prev }}{T}>\frac{d \text { Qrer }}{T} \\
& \therefore \frac{d s>\frac{d \text { firs }}{T}}{\text { or }}\left[\begin{array}{|l|l}
\pi d s \\
\hline d \text { dis. }
\end{array}\right\}-\frac{\text { clausius }}{\text { inequality }}
\end{aligned}
$$

4) at constant ' H '
$T d S \geqslant d H$.

$$
\begin{array}{ll}
\therefore d s \geqslant 0 \quad \text { i.e. }(d s)_{H, p} \geqslant 0 \\
d s>0: \text { spontaneous } \quad d s=0 \quad \text { equilibrium. }
\end{array}
$$

5) at constant 'T'

$$
\begin{array}{ll}
T d S \geqslant d H & d G<0: \text { spontaneous } \\
0 \geqslant d H-T d S & d G=0: \text { equilibrium. } \\
0 \geqslant d G & \\
(d G)_{T, P} \leqslant 0 &
\end{array}
$$

6) at constant v.

$$
\begin{array}{ll}
T d S \geqslant d U+P d V & \\
\therefore & T d S \geqslant d U \\
\therefore & d A<0: d U-T)_{T, V} \leqslant 0 \\
\therefore & 0 \geqslant d A
\end{array}
$$

condition for spontaneity	condition for equilibrium	constant $d U<0$	$d U=0$
$S \& V$	$(d U)_{S, V} \leqslant 0$		
$d H<0$	$d H=0$	$S \& P$	$\left(d(H)_{S \& P} \leqslant 0\right.$
$d S>0$	$d S=0$	$U \& V$	$(d S)_{U, V} \geqslant 0$
$d S>0$	$d S=0$	$H \& P$	$(d S)_{H, P} \geqslant 0$
$d G<0$	$d G=0$	$P \& T$	$(d G)_{P r T} \leqslant 0$
$d A<0$	$d A=0$	$V \& T$	$(d A)_{N, T} \leqslant 0$

$T \cdot d s \geqslant d u+P d V$

Example (1)

$$
\text { Ice } \longrightarrow \text { water } \begin{aligned}
\Delta H & =+v e \\
\Delta U & =+v e .
\end{aligned}
$$

$$
\begin{aligned}
\Delta G=+v e & \rightarrow \text { at low temp } \Delta H\rangle-T A \\
& \rightarrow \text { non-spontaneous. } \\
\Delta G=-v e & \rightarrow \text { at high temp. } \Delta H\langle-T \Delta! \\
& \rightarrow \text { spontaneous. }
\end{aligned}
$$

Importance of G and A.

$\rightarrow(d G)_{T, P}<0 \quad i$ spontaneous. $\quad \longrightarrow(d A)_{T, V}<0 \quad$ spontaneous. $(d G)_{T, P}>0$: nonspontaneous. $\quad(d A)_{T, V}>0$ non-spontaneous. $(d G)_{T, P}=0:$ equilibrium. $\quad(d A)_{T, V}=0 \quad$ equilibrium.
\rightarrow We know that $\quad A=U-T S$.
at constant temp. $\quad \Delta A=\Delta U-T \Delta s$
From I law: $\Delta U=q+W \Rightarrow \Delta U=a_{\text {rex }}+H_{\text {max }}$.

$$
\text { II }{ }^{\text {nd }} \text { law : } \Delta s=\frac{\text { Qrev }}{T} \Rightarrow \quad \because T \Delta S=\text { Qrev }
$$

Nous

$$
\begin{aligned}
& \Delta A=\Delta U-T \Delta S=\text { prev }+H_{\text {max }} \text {-prev } \\
& \therefore \Delta A=W_{\max } \longleftarrow \text { work done on the system. }
\end{aligned}
$$

If. Work is done by the system $W=-x e$.

$$
\therefore-\Delta A=W_{\max }
$$

$\left\{\begin{array}{l}\text { Decrease in helmholtz free energy gives the maximum work-done by } \\ \text { the system. So A is also called as work function } \\ \because-A=\text { max }\end{array}\right.$
\longrightarrow According to

$$
G=H-T S
$$

At constant temp.

$$
\Delta G=\Delta H-T \Delta S=\Delta U-T \Delta S+P \Delta V .
$$

$$
\therefore \Delta G=\Delta A+P \Delta V \text {. }
$$

$$
\Delta G=-k_{\max }+p \Delta v
$$

- net workdone by the system.

$$
\text { i.e. } \quad-\Delta G=W_{\max }-P \Delta V
$$

$\left\{\begin{array}{l}\text { The decrease in Gibbs free energy gives maximum work } \\ \text { other than expansion work or volume-pressure work, work } \\ \text { which is done is called net-ulork done by the system. } \\ \text { and ' } G \text { ' is also net work funetion/non-PV work.. } \\ \qquad-\Delta G=W_{m a x-P \Delta V}\end{array}\right\}$
\Longrightarrow Bridging equation between thermodynamic and electrontiemistoy.

$$
\begin{aligned}
\Delta G & =-n F E_{\text {cell }} \\
-\Delta G & =n F E_{\text {cell }}
\end{aligned}
$$

$$
\Delta G=-n F E_{\text {cell }}
$$

If $E_{\text {cell }}=+v e \Rightarrow \Delta G=-v e$, spontaneous.
If $E_{\text {cell }}=-v e \Longrightarrow \Delta G=+v e$, non-spontaneous.
Que-1 The free energy change of ΔG of 1 mole of an ideal gas
that is compressed isotheraly that is compressed isothermally from 1 atm to 2 atm is
$\Longrightarrow \Delta G=-n R T \ln \left(\frac{P_{1}}{P_{2}}\right)$
$\Delta G=-1 R T \ln \left(\frac{1}{2}\right)$
$\therefore \quad \Delta G=+R T \ln 2$

Que-2 A reversible expansion of 1 mole of an ideal gas is carried out From 1.0 litre to 4.0 litre under isothermal condition at $300 \mathrm{~K} . \Delta G$
tor this process is
(i) $300 R \ln 2$

〈ii) $-600 R \ln 2$
(iii) $600 R \ln 2$
(iv) $-300 R \ln 2$

$\Rightarrow \quad V_{1}$	$=1 L . \quad V_{2}=4 L$	ΔG
		$=-300 R \ln (4)$
ΔG	$=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)$	$\Delta G=-300 R \ln \left(2^{2}\right)$
ΔG	$=-1 \cdot R \cdot 300 \ln \left(\frac{4}{1}\right)$	$\Delta G=-600 R \ln 2$

\therefore option (ii) is the correct
answer

Que-3 ΔH of a reaction is equal to the slope of the plot of i) $\Delta G \quad V_{s} \frac{1}{T}$ ai) ΔG vs T
(iii) $\frac{\Delta G}{T} \quad V_{s} T$
iii> $\frac{\Delta G}{T}+1 / 5 \frac{1}{T}$.
$\Longrightarrow \Delta G=\Delta H-T \Delta S \quad(\Delta H$: slope $) \quad$ graph b/w $\frac{\Delta G}{T} V_{S} \frac{1}{T}$
$\therefore \frac{\Delta G}{T}=\frac{\Delta H}{T}-\Delta S \quad($ slope $=\Delta H) \quad \therefore$ option (iv) is the correct answer

Que-4 The value of $\Delta U-\Delta H$ for the following reaction

$$
\begin{array}{rccc}
& \longrightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{C}(\mathrm{~s}) & \longrightarrow & \text { is } \\
\langle i\rangle-3 R T & \langle i i\rangle+3 R T & \text { viii }\rangle+R T \quad\langle i x\rangle-R T
\end{array}
$$

\Longrightarrow

$$
\begin{aligned}
\Delta n_{g} & =\left(n_{g}\right) \text { product }-n_{g}(\text { recutant }) \\
& =3-0 \\
& =3 \\
\Delta H & =\Delta U+R T \Delta n_{g} \Longrightarrow \Delta U-\Delta H=-R T \Delta n_{g}
\end{aligned}
$$

$\therefore \Delta U-\Delta H=-3 R T \quad \because \Delta n_{g}=3$
\therefore option (1) is the correct
answer.

Que-5 In an irreversible process, the change in Gibbs free energy ($d G$) and the change in entropy ($d s$), satisfy the criteria.
i) $(d S)_{V, U}=0, \quad(d G)_{T, P}=0 . \quad\langle$ iii $\rangle \quad(d S)_{V, L S}=-v e, \quad(d G)_{T_{1} P}=-v / e$
ii) (dst) $V, U=0^{\circ} \quad(d G)_{T, p}=+v e \quad\langle i v\rangle \quad(d s)_{U, V}=+v e, \quad(d G)_{T, p}=-v e$.
$\Longrightarrow \quad T d S \geqslant \Delta U+P \Delta V . \quad d G \frac{X}{*} V d P-S d T . \quad$ is the cor ret

$$
\therefore(d s)_{u, v}=+v e
$$

$$
(d G)_{p, T} \nless 0
$$

$$
(ब G)_{p, T}=-v e
$$

Que-6 In vieur of the sign of ΔG for the following reactions.

$$
\begin{array}{ll}
\mathrm{PbO}_{2}+\mathrm{Pb} \longrightarrow 2 \mathrm{PbO} & \Delta G<0 \\
\mathrm{SnO}_{2}+\mathrm{Sn} \longrightarrow 2 \mathrm{SnO} & \Delta G>0 .
\end{array}
$$

Which of the state are more stable for $\mathrm{Pb}+\mathrm{Sn}_{\mathrm{n}}$.

〈i〉 $+4,+2$
（ii）$+2,+2$
viii）$+4,+4$

$$
\text { xiv }\rangle+2,+4 \text {. }
$$

\Longrightarrow（i） $\mathrm{PbO}_{2}+\mathrm{Pb} \longrightarrow 2 \mathrm{PbQ}$
$\Delta G<0$－spontaneous
forward real ${ }^{2}$ is favourable
product is stable $\therefore \mathrm{Pb}^{2+}$ is stable

Que－7 Calculate change in Gibbs free energy in cal．during compression of 2 moles of an ideal gas from 1 atm to 10 atm at 300 K ．
$\Longrightarrow \quad n=2$ mole $T=300 \mathrm{~K}$ ．

$$
P_{1}=1 \mathrm{~atm} \quad P_{2}=10 \mathrm{~atm} .
$$

$\Delta G=-n R T \times 2.303 \log \left(\frac{P_{1}}{P_{2}}\right)$
$\therefore \Delta G=-2 \times 2.303 \times 8.3 \times 300 \log \left(\frac{1}{10}\right)$
$\Delta G=+5 \times 2.303 \log 10$
$\Delta G=11.515 \times 1$
$\Delta G=11.5 \mathrm{~kJ} / \mathrm{mol}$

Que－ 8 Calculate the change in Gibbs free energy during expansion of 5 moles of． an ideal gas from 10 litre to 100 litre at $27^{\circ} \mathrm{C}$ ．
$\Rightarrow \quad n=5$ ，$\quad T=27^{\circ} \mathrm{C}=300 \mathrm{~K} \quad R=8.3 \mathrm{~J} / \mathrm{K} . \mathrm{mol}$ ．
$\therefore R T=2.5 \mathrm{~kJ} / \mathrm{mol}, \quad V_{1}=10 \mathrm{~L}, V_{2}=100 \mathrm{~L}$.
$\therefore \Delta G=-2.303 n R T \log \left(\frac{V_{2}}{V_{1}}\right)=-2.303 \times 2.5 \times 5 \log \left(\frac{180}{10}\right)$
$\Delta G=-2.303 \times 12.5 \times \log 10$
$\Delta G=-2.303 \times 12.5$
$\Delta G=-27.75 \mathrm{~kJ} / \mathrm{mol}$
Que－9 Sign of ΔG for melting of ice is－re at．
（i） 265 K
（ii） 270 K ．
viii） 271 K 〈iv〉 274 K ．

| $\Delta G<0$ above $273 \mathrm{~K} \Rightarrow$ spontaneous below $273 \mathrm{~K} \Longrightarrow$ nonspontaneous | \because option iv is the correct |
| :--- | :--- | :--- |
| $\Delta G>0$ answer． | |

Que－10 Consider the freezing of liquid $\mathrm{H}_{2} \mathrm{O}$ at $+10^{\circ} \mathrm{C}$ for this process what are the signs of $\Delta H, \Delta S \& \Delta G \quad$

$$
\langle i\rangle+\text { rec, -ve, o } \quad \text { ai } \quad \text {-re, tue, o }
$$

〈iii＋be，－le，＋re
〈iv＞－be，－re，＋re．

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\text { but } l \longrightarrow s: \Delta H=-v e
$$

above $0^{\circ} \mathrm{C} \Rightarrow$ nonspontaneous
below $\circ^{\circ} \longrightarrow$ spontaneces．

$$
\therefore \therefore \text { option (iv) is the }
$$

Que－11 For $A \rightarrow B \quad \Delta H=4$ kcal．mol $k, \Delta S=1 v$ war．nor．k ，the reaction is spontaneous when temperature can be－ ai） 400 K 〈ii〉 300 K ．
viii） 500 K 〈iv〉 100 K ．
\therefore option（3）is
$\Longrightarrow \Delta H=4 \mathrm{kcal} / \mathrm{mol} \cdot \mathrm{K}=4000 \mathrm{cal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
$\therefore \quad A G=\Delta H-1 \Delta S$
$=4000-500 \times 10$
$\Delta S=10 \mathrm{dal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K.}^{-1}$
for reaction to be spontaneous，$T \Delta S>\Delta H$
Q4e－12 Consider the following spontaneous reaction $3 X_{2}(\mathrm{~g}) \longrightarrow 2 X_{3}(\mathrm{~g})$ ，what are the sign of $\Delta H, \Delta S$ and ΔG for the reaction．

〈i〉＋re，＋re，＋re
〈ii〉＋re，＋ie，－xe．
〈iii〉－re，＋re，－be
〈iv＞－ve，－re，－re．
$\Rightarrow \Delta s=-v e . \quad \Rightarrow$ the reaction must carried out at lowe temp．to
$\left.\begin{array}{rl}3 x_{2} \longrightarrow 2 x_{3} & \text {（spontaneous）} \\ \Delta H & =-v e . \\ \Delta G=-v e\end{array}\right\} \begin{aligned} & \text { to be spontaneous } \\ & \therefore \text { option（iv）is the correct answer．}\end{aligned}$

Que－13 A process is carried out at constant V ant at constant entropy s．It is will be spontaneous if
〈i〉 $\Delta \in<0$
ai）$\triangle H<0$
〈iii〉 $\Delta U<0$
〈iv＞$\triangle A<0$
\Longrightarrow Ak Clausius inequality theorem $\quad \therefore$ For reaction occurs to be spontaneous

$$
T d s \geqslant d U+P d v .
$$

$$
d \omega<0
$$

at constant＇V＇${ }^{\prime} s$＇dU 20 option（iii）is the correct ansures．
Que－14 In a reaction change in enthalpy is $3 \mathrm{kcal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ and ΔS is 10 cal．$K^{-1} \cdot \mathrm{~mol}^{-1}$ ．at what temperature reaction attains equilibrium．\quad for $\triangle G<0$ temp．must be greater than 300 K ．
$\Rightarrow \quad \Delta H=3 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \mathrm{~K}^{-1}=3000 \mathrm{col} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ $\Delta S=10 \mathrm{tal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$,
For reaction to be spontaneow，$\triangle G \angle O$ at $300 \mathrm{k} \quad \Delta G=0$－equilibrium

Que－15 Which of the following thermodynamic properties must be associated wit a reaction found to be spontaneous at high temperature，but not spontaneous at low temperature．

Que－16 The maximum non $P-V$ work that a system can perform is－〈i〉 $\Delta H \quad$ Lii $\Delta G \quad\langle i v\rangle \Delta A$ ．
$\Longrightarrow \quad \triangle A=-k / \max$ ．or $-\Delta A=H_{m a x} \quad \therefore$ maximum non－P / V work

$$
\begin{array}{rlrl}
\Delta G & =\Delta A+P \Delta V . & \text { What a system can perform is } \Delta G \\
\Delta G & =-k_{\max }+P \Delta V . & \therefore \text { option (ii) is the correct answer } \\
\square \Delta G & \left.=k_{\max }-P \Delta V\right]
\end{array}
$$

Que－17 Although the dissolution of $\mathrm{NH}_{4} \mathrm{Cl}$ in water is an endothermic reaction even though it is spontaneous because．－
i）$\Delta s=+v e$
（ii）$\Delta S=0$
（iii）$T \Delta S<\Delta H$
〈iv＞$T \Delta S>\Delta H$ sf $\Delta S=+v e$ ．
\Longrightarrow For endothermic reaction $\quad \Delta G$ become less than 0 for $\Delta H>0$ $\Delta H=+v e$ or $\Delta H>0$
For the reaction to be spontaneous． $\triangle G<0$

$$
\text { if } T \Delta s>\Delta H \quad \& \quad \Delta s=+v e .
$$

\therefore option（iv is the correct ansules

Que－18 Which of the following diagram best describes the relationship between ΔG and temp．for the following reaction．

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

ai）

〈iii〉

〈iv〉

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S . \\
& \therefore \Delta S=-V+\quad \therefore \text { option (i) is the } \\
& y=c+m x . \\
& m=-\Delta S \\
& m=-(-v e) \\
& m=+1 c d
\end{aligned}
$$

Que-19 1 mole of an ideal gas initially present in a 2 litre insulated cylinder at 300 K is allowed to expand against vacuum to 8 litre determine $W, \Delta U, \Delta H, \Delta 5$ universe $\& \Delta G$,
$\longrightarrow \quad n=1$ mole. $\quad V_{1}=2$ Litre $\quad V_{2}=8 \mathrm{~L} . \quad T=300 \mathrm{~K} . \quad q=0$.

$$
\begin{aligned}
& \Delta S=n R \ln \left(\frac{y_{2}}{v_{1}}\right) \text { isothermal process } \\
& \Delta S=R \ln \left(\frac{8}{2}\right) \\
& \Delta S=R \ln 4=R \cdot \ln 2^{2} \\
& \Delta S=2 R \cdot \ln 2
\end{aligned}
$$

$$
\Delta G=-T \cdot \Delta S=-300 \times 2 R \cdot \ln 2
$$

$$
\Delta G=-600 R \cdot \ln 2
$$

$$
\Delta G=\Delta H-T \Delta S .
$$

$$
\Delta H=\Delta G-T \Delta S
$$

$$
=-600 R \ln -300 \times 2 R \ln 2
$$

$$
\Delta 4=-1200 R \ln 2
$$

expansion against vacuum.
$P_{\text {ex }}=0$.

$$
\Delta H=\Delta U=-1200 R \ln 2
$$

Que-20 For the reaction $\mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{l}) \longrightarrow 2 \mathrm{XO}_{2}(\mathrm{~g})$ at 298 K . Given that $\Delta U=9 . k J, \quad \Delta S=84 \mathrm{~J} / \mathrm{k}, \Delta G=$?

1) -11.08 kJ viii) -13.55 kJ
ii) +11.08 kJ
〈iv〉 +13.55 kJ .

Que -21 The entropy change Δs in $J \cdot g^{-1} \cdot K^{-1}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, $\Delta H=2270 \mathrm{~J} / \mathrm{gram}$ at $4 \mathrm{~atm}, 100^{\circ} \mathrm{C}$ is
(i) $2270 / 373$
(ii) $373 / 2270$
(iii) 2270×373
xiv> $(2270 \times 373)^{1 / 2}$.

Some important formulae.
$\rightarrow T d S \geqslant d U+P d V$
$\rightarrow(d u)_{s, v} \leqslant 0$
$\rightarrow(d H)_{s, p} \leqslant 0$
$\longrightarrow(d s)_{u, v} \geqslant 0$
\rightarrow klook done by the system.

$$
-A=U_{\text {max. }}
$$

\rightarrow Neter-work done / non-PV work done by the system.

$$
-G=k I_{\max }-p \Delta v .
$$

\rightarrow bridging equation between thermodynamic and electrochemistry

$$
\begin{aligned}
\Delta G & =-n F E_{\text {cell }} \\
-\Delta G & =n F E_{\text {cell }} .
\end{aligned}
$$

The expression that gives the relation between G, H_{1}, A, U [dependent variable] and T, P, v, s [independent variables] sis called Gibbs's equation.
$U, H, G, A:$ dependent variables.
T, P, X, S : independent variables.
\rightarrow.. A/c s $^{\text {st }}$ law.

$$
d U=d Q+d \bar{k}=d q-P d V .
$$

Adc $2^{\text {nd }}$ law

$$
\begin{align*}
& d s=\frac{d Q}{T} \quad \because d q / d G=T \cdot d s . \\
& \therefore \quad d u=T d s-P d v . \tag{1}\\
& u=F(s, v) . \tag{1}
\end{align*}
$$

(2) $H=U+P V$.

$$
\begin{aligned}
\therefore & d H=d u+p d V+V d p . \\
& d H=T d s-P d v+p d V+V d p \\
\therefore \quad & d H=T d s+V d p \\
& H=f(s, p)
\end{aligned}
$$

(3) $\quad d G=d H-T d s-s d T$

$$
\begin{align*}
& =I d s-v d p-t d s-s d T \\
& d G=+V d p-5 d \pi \tag{3}\\
& G=f(P, T) \\
& d A=d w-d(T s) \\
& d A=I d S-P d V-I d S-S d T \\
& d A=-P d V-s d T \\
& A=f(V, T) \text {. }
\end{align*}
$$

i) $d U=T d s-P d v . \quad U=f(s, v)$
ii) $d H=T d s+V d P . \quad H=f(s, P)$
iii) $d G=V d P-S d T \quad G=f(T, P)$
iv> $d A=-P d V-s d T . \quad A=f(T, V)$

$$
\begin{aligned}
& \rightarrow d U=T d s-P d v \quad \quad \quad t=f(s, v) \quad\left(\frac{\partial U}{\partial s}\right)_{V}=T \quad \& \quad\left(\frac{\partial U}{\partial v}\right)_{T}=-P \\
& \rightarrow \quad d H=T d s+\quad\left(\frac{\partial H}{\partial s}\right)_{p}=T \quad H=f(s, p) \quad \& \quad\left(\frac{\partial H}{\partial P}\right)_{s}=x . \\
& \rightarrow \quad d G=V d P-S d T \quad G=f(T, P) \quad\left(\frac{\partial G}{\partial P}\right)_{T}=V \quad \& \quad\left(\frac{\partial G}{\partial T}\right)_{P}=-S \\
& \rightarrow \quad d A \equiv-P d V-\$ d T \quad A=f(T, V) \quad\left(\frac{\partial A}{\partial V}\right)_{T}=-P \quad \& \quad\left(\frac{\partial A}{\partial T}\right)_{V}=-S .
\end{aligned}
$$

From the above equation.

$$
\begin{array}{ll}
\left(\frac{\partial U}{\partial S}\right)_{V}=\left(\frac{\partial H}{\partial S}\right)_{P}=T & \left(\frac{\partial H}{\partial P}\right)_{S}=\left(\frac{\partial G}{\partial P}\right)_{T}=V \\
\left(\frac{\partial U}{\partial V}\right)_{S}=\left(\frac{\partial A}{\partial V}\right)_{T}=-P & \left(\frac{\partial G}{\partial T}\right)_{P}=\left(\frac{\partial A}{\partial T}\right)_{V}=-S
\end{array}
$$

$\longrightarrow U, H, G, A \longrightarrow$ All are extensive properties \longrightarrow depends on no. of moles.
Now,
for closed equilibrium system.

there is no change in number
of moles so far.
hence, U, H, G, A are not depends
on above system.
\rightarrow For open system.
$|A \rightleftharpoons B|$ ' n ' doesn't remains constant.

U, H, G, A depends on ' n ' for open system.
\rightarrow Exact differentials: The functions which is integrated between appropriate limit is called exact differentials.
Example: all state functions. - U, G, H, A, \ldots.

$$
\begin{aligned}
& \text { (1) } \\
& \qquad \int_{U_{1}}^{U_{2}} d U= U_{2}-U_{1} \\
& \text { path I only. } \int_{U_{1}}^{U_{2}} d U=\int_{U_{1}}^{U_{3}} d U+\int_{U_{3}}^{U_{2}} d U=U_{2}-U_{1} \\
& U_{4} \quad U_{2}
\end{aligned} \rightarrow \text { definite value: } \quad \text { exact differentials. }
$$

\rightarrow Inexact differentials: The functions which are not integrated in between appropriate limits is called path functions

Example: all path functions are inexact differentials: q or ks. (1) $\int_{q_{1}}^{q_{2}} d Q=Q_{2}-Q_{1}$ (it's values depends on path).

$$
\text { path I: } \left.\int_{Q_{1}}^{Q_{2}} d Q=\int_{Q_{1}}^{Q_{3}} d Q+\int_{Q_{3}}^{Q_{2}} d Q=\left(Q_{2}-Q_{1}\right)_{1}\right] \quad \begin{aligned}
& Q_{2} \\
& \left.\begin{array}{l}
Q_{4} \\
\text { dIfferent } \\
\text { Inalst }
\end{array}\right] \text { values : } \\
& Q_{2}
\end{aligned}
$$

Euler's reciprocal rule.

Whether a given function is exact or inexact differential that can be obtained by Euler's reciprocal rules.

$$
\begin{aligned}
& d z=M d x+N d y \\
\Rightarrow & \left(\frac{\partial M}{\partial Y}\right)_{x}=\left(\frac{\partial N}{\partial x}\right)_{r}
\end{aligned}
$$

state functions: exact differential : definite value : U, G, H, A, \ldots path functions: inexact differential: different values: Q_{1} w.
\# Maxwell Relations.

$$
\begin{aligned}
& \longrightarrow d U=+T d s-P d V . \quad \longrightarrow d H=T d s+V d P . \\
& \left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V} \\
& \rightarrow \quad d G=V d P-S d T \\
& \longrightarrow \quad d A=-P d V-s d T \\
& \left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T} \\
& \left(\frac{\partial G}{\partial P}\right)_{T}=\left(\frac{\partial H}{\partial P}\right)_{S}=V \\
& \longrightarrow\left(\frac{\partial A}{\partial V}\right)_{T} \\
& \longrightarrow\left(\frac{\partial G}{\partial T}\right)_{P}=\left(\frac{\partial A}{\partial T}\right)_{V}=-S . \\
& \longrightarrow\left(\frac{\partial U}{\partial S}\right)_{V}=\left(\frac{\partial H}{\partial S}\right)_{P}=T .
\end{aligned}
$$

Que-1 For a given system, of constant composition. The pressure is given by.
(i) $-\left(\frac{\partial U}{\partial s}\right)_{V}$

Lii $-\left(\frac{\partial U}{\partial V}\right)_{s}$
〈iii> $\left(\frac{\partial U}{\partial S}\right)_{T} \quad\langle i v\rangle\left(\frac{\partial U}{\partial v}\right)_{T}$

$$
-\left(\frac{\partial U}{\partial V}\right)_{S}=-\left(\frac{\partial A}{\partial V}\right)_{T}=P
$$

\therefore option (2) is the correct answer

Que-2 For a process in a closed system, temperature is equal to
a. $\left(\frac{\partial H}{\partial P}\right)_{s}$
b. $\left(\frac{\partial A}{\partial v}\right)_{T}$
c. $\left(\frac{\partial G}{\partial P}\right)_{T}$
d. $\left(\frac{\partial H}{\partial S}\right)_{p .}$

$$
\begin{aligned}
& d u=T d s-P d v \\
& d H=v d P+T d s
\end{aligned} \quad\left(\frac{\partial U}{\partial s}\right)_{V}=\left(\frac{\partial H}{\partial s}\right)_{P}=T
$$

\therefore option (4) is the correct answer
2ue-3 The correct thermodynamic relation among the following.
(a) $\left(\frac{\partial U}{\partial V}\right)_{S}=-P$
<ii) $\left(\frac{\partial H}{\partial V}\right)_{S}=-p$.
viii) $\left(\frac{\partial G}{\partial U}\right)_{5}=-P$

〈iii> $\left(\frac{\partial A}{\partial y}\right)_{s}=-p$.

$$
d u=T d S-P d V \quad\left(\frac{\partial w}{\partial V}\right)_{S}=-P
$$

$$
\begin{aligned}
& d A=-S d V-P d T \\
& d G=V d P-S d T
\end{aligned}
$$

\therefore option (1) is the correct answer.

Que-4 Using the fundamental equation $d A=-S d T-P d V$. The maxuell relation is
(a) $\left(\frac{\partial A}{\partial P}\right)_{T}=\left(\frac{\partial U}{\partial S}\right)_{V}$.
(b) $\left(\frac{\partial S}{\partial V}\right)_{P}=\left(\frac{\partial P}{\partial T}\right)_{V}$.
(c) $\left(\frac{\partial T}{\partial V}\right)_{S}=\left(\frac{\partial P}{\partial S}\right)_{T}$
(d) $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$.
)
Que-5 The maxuell relationship derived from equation $d G=V d p$ sdT is
(a) $\left(\frac{\partial V}{\partial T}\right)_{P}=\left(\frac{\partial S}{\partial P}\right)_{T}$
(b) $\left(\frac{\partial P}{\partial V}\right)_{T}=\left(\frac{\partial T}{\partial S}\right)_{P}$.
(c) $\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T}$
(d) $\left(\frac{\partial P}{\partial V}\right)_{T}=-\left(\frac{\partial T}{\partial S}\right)_{P}$.

$$
\begin{aligned}
\Rightarrow \quad & d G
\end{aligned}=V d P-S d T
$$

\therefore option (C) is the correct answer.

Que-6 Tdentify which of the following is not correct
(a) $-\left(\frac{\partial T}{\partial V}\right)_{S}=\left(\frac{\partial P}{\partial S}\right)_{V}$
(b) $-\left(\frac{\partial T}{\partial p}\right)_{s}=\left(\frac{\partial V}{\partial s}\right)_{p}$
(c) $-\left(\frac{\partial S}{\partial V}\right)_{T}=-\left(\frac{\partial P}{\partial T}\right)_{V}$
(d) $-\left(\frac{\partial S}{\partial P}\right)_{T}=\left(\frac{\partial V}{\partial T}\right)_{P}$.
\Rightarrow

$$
\begin{aligned}
& d H=V d P+T d S \\
& d U=T d S-P d V \\
& d A=-P d V-S d T \\
& d G=V d P-S d T
\end{aligned} \quad\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)
$$

\therefore option (B) is the correct

Que-7 $\left(\frac{\partial L}{\partial s}\right)_{p}=$?
(ब) $T-P\left(\frac{\partial T}{\partial P}\right)_{S}$
(b) $T+p\left(\frac{\partial T}{\partial P}\right)_{S}$.
(c) $T-P\left(\frac{\partial P}{\partial T}\right)_{S}$
(d) $T+P\left(\frac{\partial P}{\partial T}\right)_{S}$

$$
-d A=p d V+s d T
$$

$$
\left(\frac{\partial U}{\partial S}\right)_{P}=\frac{\partial}{\partial S}\{T d S-P d V\} \quad \therefore \text { option (a) is the }
$$

$d H=V d P+T d s$
$d u=-P d v+T d s$

$$
=T-p\left(\frac{\partial V}{\partial S}\right)_{p}
$$

$=T-P\left(\frac{\partial T}{\partial P}\right)_{S} \quad(\because d H=V d P+T d S)$
$d G=V d P-S d T$
Que-8 $\left(\frac{\partial u}{\partial x}\right)_{T}=$?
(b) $T\left(\frac{\partial P}{\partial T}\right)_{V}-P$
(c) $T\left(\frac{\partial T}{\partial P}\right)_{V}+P$
(c) $T\left(\frac{\partial T}{\partial p}\right)_{V}-p$.
a. $T\left(\frac{\partial P}{\partial T}\right)_{v}+P$.
$\Longrightarrow \quad d H=V d P+T d s$
$d L U=-P d V+T d s \quad \therefore$ option (b) is the correct
$d G=V d P-S d T$

answer.

$-d A=p d V+s d T$

$$
\begin{aligned}
\left(\frac{\partial U}{\partial V}\right)_{T} & =\frac{\partial}{\partial V}\{T d S-P d V\} \\
& =T\left(\frac{\partial S}{\partial V}\right)_{T}-P=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
\end{aligned}
$$

$\underline{\underline{\text { 2ue-g }}}\left(\frac{\partial H}{\partial P}\right)_{+}=8$.
(a) $V+T\left(\frac{\partial U}{\partial T}\right)_{P}$
(b) $\quad V-T\left(\frac{\partial V}{\partial T}\right)_{P}$
(c) $T\left(\frac{\partial V}{\partial T}\right)_{P}-V$
(d) $-T\left(\frac{\partial T}{\partial V}\right)_{p}+V$.
$\int \frac{\partial P}{\partial P} d H=X d P+T d s$
$\left(\frac{\partial H}{\partial P}\right)_{T}=\frac{\partial}{\partial P}\{V d P+T d S\}=V+T\left(\frac{\partial S}{\partial P}\right)_{T}=V+T\left\{-\left(\frac{\partial V}{\partial T}\right)_{P}\right\}$

$$
=V-T\left(\frac{\partial V}{\partial T}\right)_{P}
$$

\therefore option (b) is the correct answer.

Trick to solve Maxwell reflations.
and some important formulae.

$$
\begin{array}{rlrl}
\longrightarrow d U & =T d S-P d V & H & =f(S, V) \\
\rightarrow d H & =T d S+V d P . & H & =f(S, P) \\
\rightarrow d G & =V d P-S d T & G & =f(P, T) \\
\longrightarrow d A & =-P d V-S d T & A & =f(V, T)
\end{array} \quad \rightarrow\left(\frac{\partial G}{\partial T}\right)_{P}=\left(\frac{\partial G}{\partial P}\right)_{T}=x .
$$

\longrightarrow Euler's reciprocal rule

$$
\longrightarrow\left(\frac{\partial U}{\partial S}\right)_{v}=\left(\frac{\partial H}{\partial S}\right)_{p}=T .
$$

$$
\rightarrow\left(\frac{\partial U}{\partial V}\right)_{S}-\left(\frac{\partial A}{\partial V}\right)_{T}=-P .
$$

$$
\begin{aligned}
d z & =M d x+N d y . \\
\left(\frac{\partial M}{\partial Y}\right)_{x} & =\left(\frac{\partial N}{\partial x}\right)_{Y} .
\end{aligned}
$$

Thermodynamic square method.
trick: Good Professor Have Studied Under Very Antique. Teacher
G-Gibb'sfree P-Pressure H-Enthalpy S-Entropy U-internal energy energy V Volume T - temperature. A-HelmHolt free energy
T. P, Vs thermodynamic
state variable
G, H, O, U, A - thermodynamic
state function

 H

$$
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}
$$

whenever P, S come together add -ve sign v to it.
Good

$$
p
$$

$$
\left(\frac{\partial V}{\partial T}\right)_{p}=-\left(\frac{\partial S}{\partial p}\right)_{T}
$$

$T \quad G \quad \vec{P}$

G
H

$$
+\left(\frac{\partial T}{\partial P}\right)_{S}=+\left(\frac{\partial V}{\partial S}\right)_{P}
$$

\square

T \quad P

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}
$$

A
H
V US

Trick for various thermodynamic relations:

$$
\begin{aligned}
& \left.\begin{array}{lll}
G & P & \text { (i) } d H=V d P+T d S \\
A & H & \begin{array}{l}
\text { (ii) } d G
\end{array} \\
\begin{array}{l}
H
\end{array} \\
\text { (iii) }-d A=V d P-S d T \\
\text { (iv) } d U=S d T+P d V
\end{array}\right\} \text { lib's equation. } \\
& \rightarrow\left(\frac{d H}{d s}\right)_{p}=\left(\frac{d U}{d s}\right)_{y}=T \quad\left(\frac{d A}{d t}\right)_{V}=\left(\frac{d G}{d t}\right)_{p}=-s \\
& \rightarrow\left(\frac{d H}{d P}\right)_{S}=\left(\frac{d G}{d P}\right)_{T}=V \quad \rightarrow\left(\frac{d U}{d V}\right)_{S}=\left(\frac{d A}{d V}\right)_{T}=-P \\
& \left\{\begin{array}{l}
\text { Good Professors Have Studied Under Very Antique Teacher } \\
\text { गुड प्रोफेसर हैव स्टड़ड } \\
\text { अंडर बहरी अँटीक हीचर }
\end{array}\right\}
\end{aligned}
$$

\# cyclic rules \# - mppiicarie to otare junctions only want now tu int If $z=f(x, y) \quad$ path functions.
then $\quad d z=\left(\frac{\partial I}{\partial x}\right)_{Y} d x+\left(\frac{\partial I}{\partial Y}\right)_{X} \partial Y$

For a process at constant $z \Longrightarrow d z=0$

$$
\begin{aligned}
& \left(\frac{\partial z}{\partial x}\right)_{Y} \cdot d x+\left(\frac{\partial z}{\partial Y}\right)_{x} \cdot \partial Y=0 \\
& \left(\frac{\partial z}{\partial x}\right)_{Y} \cdot d x=-\left(\frac{\partial z}{\partial Y}\right)_{x} \partial Y \\
& \left(\frac{\partial z}{\partial x}\right)_{Y} \cdot\left(\frac{\partial x}{\partial Y}\right)_{Z} \cdot\left(\frac{\partial Y}{\partial z}\right)_{x}=-1
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { it is called cyclic rule which is applicable to } \\
\text { state functions only \& not to path functions }
\end{array}\right\}
$$

Example For 1 mole of ideal gas $\quad P V=n R T \Rightarrow P V=R T$

$$
\begin{gather*}
d(P V)=d(R T) \\
P d V+V d P=R d T \tag{1}
\end{gather*}
$$

at constant temperature ' T ' $\quad P d V=-V d P$
(2). $\left(\frac{\partial V}{\partial P}\right)_{T}=\frac{-V}{P}$
at constant pressure 'P' $P d V=R d T$
(3) $\left(\frac{\partial T}{\partial Y}\right)_{P}=\frac{P}{R}$
at constant volume 'V' $V d P=$ edT

$$
\left(\frac{\partial P}{\partial T}\right)_{v}=\frac{R}{V}
$$

Ale cyclic rule.

$$
\left(\frac{\partial V}{\partial P}\right)_{+} \cdot\left(\frac{\partial T}{\partial V}\right)_{P} \cdot\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{-V}{P} \times \frac{P}{R} \times \frac{R}{V}=-1
$$

$\Longrightarrow G=f(T, P) \quad\left(\frac{\partial G}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial P}\right)_{G}\left(\frac{\partial P}{\partial G}\right)_{T}=-1$

$$
\Longrightarrow \quad A=f(T, V) \quad\left(\frac{\partial A}{\partial T}\right)_{N}\left(\frac{\partial V}{\partial A}\right)\left(\frac{\partial T}{\partial V}\right)_{A}=-1
$$

Que-1 For an ideal gas.
(i) $\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T}=0 \quad$ (iii) $\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T}=-1$
(ii) $\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T}=1$
$(\hat{i} V)\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T}=-2$
\Rightarrow option (ii) is the correct insurer.

Que-2 Non-spontaneous process among the following is

1. The vaporization of superheated water at $105^{\circ} \mathrm{C}$ \& 1 atm pressure
2. Expansion of gas into vacuum.
3. Freezing of super-cooled custer at $-10^{\circ} \mathrm{C}$ \& 1 atm pressure
4. Freezing of water at $0^{\circ} \mathrm{C}$ \& 1 atm pressure.
$\Longrightarrow \quad \mathrm{At} 0^{\circ} \mathrm{C}$.

$$
\text { Ice } \rightleftharpoons \text { water } \frac{\text { (equilibrium process) }}{h}
$$

so freezing of water \longrightarrow ice.
\therefore option (4) is the correct answer is not spontaneous ie. it is non-spontanieous

$$
\left\{\begin{array}{l}
\text { super heated water - above } 100^{\circ} \mathrm{C} \text { exist as liquid. } \\
\text { super cooled water - below } 0^{\circ} \mathrm{C} \text { exist as liquid }
\end{array}\right\}
$$

Que-3 Very whether $d z=\left(5 x^{2} y+3 y^{4}\right) d x+\left(5 / 3 x^{3}+12 y^{3} x\right) d y$ is an exact differential or not.

$$
\Longrightarrow \text { If } \quad d I=M d x+N d Y \Rightarrow\left(\frac{\partial M}{\partial Y}\right)_{x}=\left(\frac{\partial N}{\partial x}\right)_{Y}
$$

given $\quad d z=\left(5 x^{2} y+3 y^{4}\right) d x+\left(\frac{5}{3} x^{3}+12 y^{3} x\right) d y$

$$
\begin{aligned}
\left\{\frac{\partial\left(5 x^{2} y+3 y^{4}\right)}{\partial y}\right\}_{x} & =\text { or } \neq\left\{\frac{\partial\left(\frac{5}{3} x^{3}+12 y^{3} x\right)}{\partial x}\right\}_{\gamma} \\
5 x^{2}+3 \times 4 y^{3} & =\text { or } \neq 5 \% \times 8 x^{2}+12 y^{3}
\end{aligned}
$$

$$
\therefore \quad 5 x^{2}+12 y^{3}=5 x^{2}+12 y^{3}
$$

\therefore given $d z$ is an exact differential.

Que-4 The exact differential $d F$ of a state function $f(x, y)$ among the follow is
(i) $d x-\frac{x}{y} d y \quad d F=f(x, y)$
(ii) $\frac{1}{\gamma} d x-\frac{x}{y^{2}} d \gamma \quad\left(\frac{\partial F}{\partial x}\right)_{\gamma}=\left(\frac{\partial F}{\partial y}\right)_{x}$.
(iii) $x d y$.
(iv) $y d x-x d y$.
\Longrightarrow (i) $d x-\frac{x}{y} d=1 \quad N=-\frac{x}{r_{1}}$

$$
\left(\frac{\partial M}{\partial y}\right)_{x}-\left(\frac{\partial 1}{\partial y}\right)_{x}=0 \quad \quad \text { f. }\left(\frac{\partial N}{\partial x}\right)_{y}=\left(\frac{\partial \frac{-x}{y}}{\partial x}\right)_{y}=-\frac{1}{y} x^{2}=\frac{-x^{2}}{y}
$$

$\therefore\left(\frac{\partial M}{\partial y}\right)_{x} \neq\left(\frac{\partial N}{\partial x}\right)_{Y}$ i.e. given function is not exact. differential.
(ii)

$$
\begin{aligned}
& \frac{1}{y} d x-\frac{x}{y^{2}} d y \quad M=\frac{1}{y}=y^{-1} N=-x / y^{2} \\
&\left(\frac{\partial M}{\partial y}\right)_{x}=\left(\frac{\partial y^{-1}}{\partial y}\right)_{x}=-y^{-2}=-\frac{1}{y^{2}} \quad \& \quad\left(\frac{\partial N}{\partial x}\right)_{y}=\left\{\frac{\partial\left(-\frac{x}{y^{2}}\right)}{\partial x}\right\}_{y}=-\frac{1}{y^{2}}\left(\frac{\partial x}{\partial x}\right)_{y} \\
& \therefore\left(\frac{\partial M}{\partial y}\right)_{x}=\left(\frac{\partial N}{\partial x}\right)_{y}
\end{aligned}
$$

\therefore given function is an exact differential.
\therefore option (ii) is the correct answer.

Mathematical formulae \#

$$
\begin{aligned}
& \rightarrow \ln x=2.303 \log x \quad \rightarrow \ln x=a \Rightarrow x=e^{a} \quad \rightarrow \log x=a \Rightarrow x=10^{d} \\
& \rightarrow \ln (a \cdot b)=\ln a+\ln b \quad \rightarrow \ln (a / b)=\ln a-\operatorname{la} b \\
& \rightarrow \ln e^{x}=x=\log 10^{x} \quad \rightarrow \quad \ln m^{n}=n \ln (m) \quad \ln c=1=\log 10 \\
& \rightarrow \log 10^{x}=x \quad \longrightarrow \log 1=0, \quad \log 2=0.3010, \quad \log 3=0.447, \quad \log 4=0.6 \\
& \rightarrow \log 5=0.699 \quad \rightarrow \log \left(\frac{1}{x}\right)=-\log x \quad\left(a^{m}\right)^{n}=a^{m n} \\
& \Rightarrow a^{m}=a^{n} \Rightarrow(m=n) \quad \Rightarrow \quad a^{\circ}=1 \quad \Rightarrow \pi /=22 / 7=3 \cdot 14
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1} \quad \longrightarrow \frac{d}{d x}(\text { constant })=0 \quad \rightarrow \frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} \\
& \rightarrow \frac{d}{d x}(U . V)=U \frac{d V}{d x}+V \frac{d U}{d x} \quad \rightarrow \frac{d}{d x}\left(\frac{U}{v}\right)=\frac{V \cdot \frac{d U}{d x}-U \frac{d V}{d x}}{v^{2}} \\
& \longrightarrow \frac{d}{d x} f(x)=f^{\prime}(x) \quad \longrightarrow \frac{d}{d x}(k \cdot f(x))=k \cdot f^{\prime}(x) \quad \longrightarrow \frac{d}{d x}(\sin x)=\cos x \text {. } \\
& \rightarrow \frac{d}{d x}(\sin a x)=a \cos x \quad \rightarrow \frac{d}{d x}(\cos x)=-\sin x \quad \rightarrow \frac{d}{d x}(\cos a x)=-a \cdot \sin x . \\
& \longrightarrow \frac{d}{d x} e^{x}=e^{x} \quad \rightarrow \frac{d}{d x} e^{a x}=a \cdot e^{x} \quad \rightarrow \frac{d}{d x}(\ln x)=\frac{1}{x} \\
& \longrightarrow \frac{d^{2}}{d x^{2}}=\frac{d}{d x} \cdot \frac{d}{d x} \quad \text { If } z=f(x, y) \text {, then } d z=\left(\frac{\partial z}{\partial x}\right)_{y} d x+\left(\frac{\partial z}{\partial y}\right)_{x} \cdot d y \text {. }
\end{aligned}
$$

\rightarrow If $z=f(x, y, z)$, then $d z=\left(\frac{\partial z}{\partial x}\right)_{y, z} d x+\left(\frac{\partial z}{\partial y}\right)_{x, z} d x+\left(\frac{\partial z}{\partial z}\right)_{x, y} d z$.
\# Integration

$$
\begin{aligned}
& \longrightarrow \int d x=x \quad \int_{x_{1}}^{x_{2}} d x=[x]_{x_{1}}^{x_{2}}=x_{2}-x_{1} \\
& \longrightarrow \int \frac{d x}{x}=\ln x \quad \int_{x_{1}}^{x_{2}} \frac{d x}{x}=[\ln x]_{x_{1}}^{x_{2}}=\ln x_{2}-\ln x_{1} \\
& \rightarrow \int \frac{1}{T^{2}} d T=\frac{1}{T}
\end{aligned}
$$

\# straight line equations.

$$
\begin{aligned}
& \rightarrow y=m x+c . \quad \longrightarrow \gamma=m x . \quad m=-v e \\
& m=\text { slope }, \quad c=\text { intercept } . \\
& \left\{\begin{aligned}
\text { slope }=m \\
\text { intercept:c }
\end{aligned}\right. \\
& \Rightarrow \quad Y=-m x+c \\
& m=\text { slope }=\frac{\gamma_{2}-\gamma_{1}}{x_{2}-x_{1}}=\frac{d y}{d x}=\tan \theta
\end{aligned}
$$

slope $=-m, \quad$ intercept $=c$.

\# $\#$ Standard Gibbs tree energy (ΔG)
$G^{\circ} \Rightarrow 1$ mole of pure substance. at $T=25^{\circ} \mathrm{C}+p=1 \mathrm{~atm}$.

Example (1)

$$
\Delta G^{0}=\sum \mathbb{G}^{0}(p)=\sum G^{0}(\mathbb{R})
$$

\longrightarrow standard Gibbs free energy of a compound is calculated from the formation of given compounds from it's element in stable form.. For this purpose standaral free energy of elements in it's stable form is assumed to be zero.

Example (1):

$$
\begin{aligned}
G^{0}\left(N_{3}\right) & =? \\
\frac{1}{2} N_{2}+\frac{3}{2} H_{2} & \longrightarrow 1 \mathrm{NH}_{3} \\
\Delta_{f} G^{0} & =\left[G^{0}\left(N_{3}\right)\right]-\left[G^{0}\left(N_{2}\right)+G^{0}\left(H_{2}\right)\right] \\
& =\left[G^{0}\left(N_{3}\right)\right]-\left[\frac{1}{2} \times 0+3 / 2 \times 0\right] \\
\Delta_{f} G^{0} & =\left[G^{0}\left(N_{3}\right)\right]
\end{aligned}
$$

Example (2)

$$
\begin{aligned}
& G_{(H C l)}^{0}=? \\
& \frac{1}{2} H_{2}+\frac{1}{2} C_{2} \longrightarrow H C I . \\
& \Delta_{f} G^{0}=\left[G^{0}(\mathrm{HCl})\right]-\left[G^{0}\left(\mathrm{H}_{2}\right)+G^{0}\left(\mathrm{Cl}_{2}\right)\right] \\
&=\left[G^{0}(\mathrm{HCl}]-\left[\frac{1}{2} \times 0+\frac{1}{2} \times 0\right]\right. \\
& \Delta_{f} G^{0}=G^{0}(H \mathrm{HI})
\end{aligned}
$$

$\therefore\left\{\begin{array}{r}\text { Standard Gibbs free energy of a compound, } G^{\circ}, \text { is nothing } \\ \text { but standard free energy of formation from it's element }\end{array}\right\}$
$\longrightarrow \Delta_{f} G^{\circ}$ of an element $=0$. in stable form.

Example $\mathrm{H}_{2} \longrightarrow \mathrm{H}_{2} \Longrightarrow$ Null reaction (No change)
Null reaction
\rightarrow For a recution.

$$
\begin{aligned}
R & \longrightarrow P \\
\Delta \text { react }^{\circ} G^{\circ} & =\sum G^{\circ}(\text { product })=\sum G^{\circ}(\text { reactant } H)
\end{aligned}
$$

Que-1 Will the reaction, $\mathrm{I}_{2(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})+\mathrm{S}_{(\mathrm{s})}$ proceeds spontaneously in the forward direction at 298 K

$$
\Delta_{f} G^{0}(H I)=1.8 \mathrm{~kJ} / \mathrm{mole} \quad \quad \Delta_{f} G^{0}\left(\mathrm{H}_{2} g\right)=33.8 \mathrm{~kJ} / \mathrm{mole} .
$$

\Longrightarrow For a reaction．，$\Delta H^{\circ}=\Sigma H^{\circ}(P)-\Sigma H^{\circ}(R)$ ．
\rightarrow For a compound if $厶_{\notin H^{\circ}}=+v e$ ，it is called endothermic compound and is less stable than reactants．
\rightarrow For a compound if $\Delta_{f} H^{\circ}=-v e$ ，it is called exothermic compounds and is more stable than reactants．$\quad \therefore$ reaction is spontaneous $\Delta_{f} G^{\circ}=\Delta_{f} G{ }^{\circ}$（product）$-\Delta_{f} G^{\circ}$（reactant）$=2(1.8)-33.8=3.6-33.8=-30.2 \mathrm{~kJ} / \mathrm{mol}$
Que－1 The compound A, B, C have $\Delta_{f} H^{\circ}$ values equal to $-10,-20, H 5$ respectively．Give decreasing order of stability．
$\Longrightarrow \quad$ increasing order of stability．

$$
\begin{array}{ccccc}
& C & \angle & <B \\
A_{f} 1^{\circ} & +15 & -10 & -20
\end{array}
$$

Que－2 For a closed system，the correct statement is．

$$
\begin{array}{rlrl}
\text { i) }\rangle d u=T d s-P d V . & \langle i i\rangle & d u=V d P+s d T \\
& \langle\text { iii }\rangle d u=T d s+P d V . & \langle\text { ix }\rangle & d u=V d P-s d T
\end{array}
$$

$\Longrightarrow \quad d \omega=T d S-P d V$ ．
\therefore option（i）is the correct answer
Que－3 $\left(\frac{\partial H}{\partial P}\right)_{B}$ is al a dimension of．
i）Pressure ai＞volume
viii）temperature（iv）Heat capacity．
$\Longrightarrow \quad d H=T d s+V d p$.

$$
\left(\frac{\partial H}{\partial P}\right)_{s}=V
$$

Que－4 The parameter which always decreases during a spontaneous process at constant $S \& \mathrm{~V}$ is
（i）u
（ii）H
〈iii〉 G
（iv）Q ．
$\Longrightarrow \quad d s=T d s-P d v$.
at $U=f(S, V) \quad \therefore$ option（i）is the correct answer
Que
Which
of the following
Maxwell relation is not correct．
〈1〉 $\left(\frac{\partial l}{\partial v}\right)_{s}=-\left(\frac{\partial r}{\partial s}\right)_{V}$ ．
〈2〉 $\left(\frac{u v}{\partial s}\right)_{p}=\left(\frac{u}{\partial p}\right)_{s}$
$\langle 3\rangle\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}$
〈4〉 $\left(\frac{\partial S}{\partial V}\right)_{T}=-\left(\frac{\partial P}{\partial T}\right)_{V}$.
\Rightarrow S
$\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \quad \therefore$ option（iva）is the

Que－6 Which of the following reactions occurs spontaneously．
（a）$A \longrightarrow B ; \quad \Delta H=-40 \mathrm{~kJ}, T \Delta S=-100 \mathrm{~kJ}$
（b）$P \longrightarrow Q \quad ; \quad \Delta H=-80 \mathrm{~kJ}, \quad T \Delta S=10 \mathrm{~kJ}$ ．
（c）$x \longrightarrow Y ; \quad \Delta H=30 \mathrm{~kJ}, \quad T \Delta S=120 \mathrm{~kJ}$ ．
（d） $\mathrm{M} \longrightarrow \mathrm{N} ; \quad \Delta H=-50 \mathrm{~kJ}, \quad T \Delta S=-150 \mathrm{~kJ}$
（e）$C \longrightarrow D$ ；$\Delta H=100 \mathrm{~kJ}, \quad T \Delta S=40 \mathrm{~kJ}$ ．
〈1〉 a, d, e
$\langle 2\rangle a, d$
〈3〉 b, c
（4）a，e．
（a）$\Delta G=\Delta H-T \Delta S=-40+100=60 \mathrm{~kJ}$ ，non－spontaneous
（b）$\Delta G=-80-10 \mathrm{~kJ}=-90 \mathrm{~kJ}$ ，spontaneous
（c）$\Delta G=30-120=-90 \mathrm{~kJ}$ ，spontaneous
（d）$\Delta G=-50-(-150)=-50+150=100 k 5$ ，non－spontaneous
（C）$\Delta G=100-4^{\circ} 0=60 \mathrm{~kJ}$ ，non－spontancous
\therefore option（3）is the correct answer．
Que－7 For the determination of absolute entropy（ s_{T} ）of a solid between T_{1} and T_{2} ，The property of solid is measured in this temp range and plotted．The area under the curve give the measure of S_{T} ． What are the variables plotted．
（i） $\ln T(x$－axis $), c_{p}(y$－axis $)$
ai）$T(x-a x i s), \quad c_{p}\left(y-a_{x i s}\right)$
viii） $\ln \frac{1}{T}(x$－axis $), \quad c_{p}(y$－axis $)$
〈iv〉 $C_{p}(x$－axis $), \ln T(\mu$－axis）．

Que－8 Identify the correct equation for entropy change of 1 mole of an ideal gas with initial volume V_{1} and temp．T_{1} ，it＇s change to final volume V_{2} and temperature T_{2} ．

1）$\Delta S=C_{V} \ln \frac{T_{1}}{T_{2}}+R \ln \frac{V_{1}}{V_{2}} \quad$ option（3）is the correct answer
2）$\Delta s=\ln \frac{T_{2}}{T_{1}}+R \ln \frac{V_{2}}{V_{1}}$

$$
\Delta s=n C_{v} \ln \left(\frac{T_{2}}{T_{1}}\right)+n R \ln \left(\frac{v_{2}}{r_{1}}\right)
$$

3）$\Delta s=C_{V} \cdot \ln \frac{T_{2}}{T_{1}}+R \ln \frac{V_{2}}{V_{1}}$
4）$\Delta s=C \cdot \ln \frac{T_{2}}{T_{1}}+R \ln \frac{V_{2}}{V_{1}}$

Que－9 At $300 \mathrm{~K}, 1$ mole of an ideal gas expanded reversibly from a volume 10 L to 100 L ．The ΔS in J / K is $\left(R=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ ．
〈i） $19.417 \quad$ 〈ii〉 $-19.147 \quad$ 〈iii〉 $1.9147 \quad$ 〈ix〉 -1.9417.
$\Rightarrow \quad \Delta S=n R \ln \left(\frac{v_{2}}{v_{1}}\right) \quad$ at constant $T \quad \therefore \Delta S=19.147 . \times 1$
$\Delta S=2.303 \times 8.314 \times 1 \times \log \left(\frac{100}{10}\right) \quad \Delta S=19.147 \mathrm{~J} / \mathrm{k}$
$\Delta S=2.303 \times 8.314 \times \log 10 \quad \therefore$ option（i）is the correct answer．
Que－10 The free energy change of 1 mole of an ideal gas that is compressed isothermally from 1 atm to 2 atm ．is
ai）$R T \ln 2$

$$
\text { 〈ii〉 }-2 R T
$$

viii）$-R T \ln 2$
〈iv〉 RT
$\Delta G=-n R T \ln \left(\frac{P_{1}}{P_{2}}\right)$
$\Delta G=\overline{+R T \ln 2}$
$\Delta G=-1 \times R T \ln \left(\frac{1}{2}\right) \quad \therefore$ option（1）is the correct answer．
Que－11 A reversible expansion of 1 mole of an ideal gas is carried out from 1 litre to 4 litre under isothermal condition at $300 \mathrm{~K} . \Delta G$
（i） $300 R \cdot \ln 2$
〈ii） 600 R． $\ln 2$ ．
〈iii〉－600 $R \ln 2$
〈iv＞$-300 \mathrm{R} \ln 2$ ．
\Longrightarrow

Que－12 The non－spontaneous reaction among the following is．
（i）The vaporization of superheated water at $105^{\circ} \mathrm{C} \& 1 \mathrm{~atm}$ ．
Li）Expansion of the gas into the vacuum．
〈iii）Freezing of supercooled water at $-10^{\circ} \mathrm{C}$ \＆ 1 atm ．pressure，
〈iv〉 Freezing of water at $0^{\circ} \mathrm{C}$ \＆ 1 atm ．
\Longrightarrow
$\underline{\underline{Q u e-13}}\left(\frac{\partial G}{\partial P}\right)_{T}=$ ？
〈i）V
〈ii〉s
$\langle i \operatorname{in}\rangle-s \quad\langle i v\rangle-v$.
\Rightarrow

Que－14 ΔH of a reaction is equal to the slope of plot．
〈i〉 $\Delta G \quad y / s \quad 1 / T$
〈ii〉 $\Delta G \quad V / s T$
〈iii〉 $\frac{\Delta G}{T} \quad V / s \quad T$
〈iv〉 $\frac{\Delta G}{T} V / s \frac{1}{T}$
\Rightarrow

Que-15 The standard free energy of formation of $\mathrm{H}_{2} \mathrm{~S}$ gas \& CdS \& is
 gas will reduced $C d S(s)$ to metallic $C d$ at this temp.
i) $\Delta G=-78.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ \& H_{2} reduces Cd
ii) $\Delta G=-39.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ \& H_{2} reduces Cds .
iii) $\Delta G=0$ k.J. mol^{-1} \& reaction is at equilibrium.
iv) $\Delta G=78.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ \& the reaction is not feasible.
\# Temperature dependence of Gibbis Helmholtz equation.
\longrightarrow consider a process which takes place at two different temperature T_{1} and T_{2}

$$
\begin{array}{cl}
\left.\begin{array}{cc}
A & T_{1} \\
G_{1} & \Delta G_{1} \\
\partial G_{1} \\
G_{2} \\
A & T_{2}^{\prime} \\
G_{1}^{\prime} & \Delta G_{2} \\
G_{2}^{\prime}
\end{array}\right) \partial G_{2} & \text { At constant pressure } \Longrightarrow d p=0 \\
G=f(T, P) . & \therefore d G=-S d T
\end{array}
$$

For initial state, $\left(\frac{\partial G_{1}}{\partial T_{1}}\right)_{P}=-S_{1}$
For final state, $\left(\frac{\partial G_{2}}{\partial T_{2}}\right)_{P}=-S_{2}$.
subtracting equation (1) from (2)

$$
\begin{gather*}
\left(\frac{\partial G_{2}}{\partial T_{2}}\right)_{P}-\left(\frac{\partial G_{1}}{\partial T_{1}}\right)_{P}=-S_{2}+S_{1}=S_{1}-S_{2}=-\left(S_{2}-S_{1}\right)=-\Delta S . \\
\therefore\left(\frac{\partial \Delta G}{\partial T}\right)_{P}=-\Delta S \quad \text { (3) } \tag{3}
\end{gather*}
$$

Nom, we know that

$$
\Delta G=\Delta H-T \Delta S .
$$

$$
\begin{equation*}
\Delta G=\Delta H+T\left(\frac{c-a}{\partial T}\right)_{p} \tag{4}
\end{equation*}
$$

 gives temperature dependence

$$
\stackrel{o r}{=}-\Delta H=-\Delta G+T\left[\frac{\partial \Delta G}{\partial T}\right]_{p}
$$

of Gibbs's free energy change
at constant pressure condition

$$
\rightarrow-\frac{\Delta H}{T^{2}}=\left[\frac{\partial}{\partial T}\binom{\Delta G}{T}\right]_{p} \quad \begin{gathered}
\text { (n) Sib's Helrihaltz equation at } \\
\text { constant }
\end{gathered}
$$

$$
\text { as }\left\{\begin{array}{l}
-\frac{\Delta G}{T^{2}}=-\frac{\Delta G}{T^{2}}+\frac{1}{T}\left[\frac{\partial(\Delta G)}{\partial T}\right]_{p} \\
\& \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{V \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}
\end{array}\right\}
$$

Similarly, Equation (3), (4) and equation (5) are three different form of
Gibbs -Helmholtz equation at constantpressure.
\rightarrow Similarly, Gibb's-Helmholtz equation at constant volume are.

$$
\begin{aligned}
& \Delta A=\Delta U+T\left[\frac{\partial(\Delta A)}{\partial T}\right]_{V} \\
& -\frac{\Delta U}{T_{2}}=\left[\frac{\partial}{\partial T}\left(\frac{\Delta A}{T}\right)\right]
\end{aligned}
$$

\# Gibbs's equation for nan-equilibrium for apen/non-equilitrium system.

open- system
$n=$ not constant
no. of moles changes

$$
\Downarrow
$$

U, G, H, A also
changes.

$$
\begin{aligned}
& \begin{array}{c}
A \\
n=\text { constant }
\end{array} \Longrightarrow B \\
& \begin{array}{c}
\text { closed system. } \\
\|
\end{array} \\
& d U=T d S-P d V \\
& d H=T d S+V d P \\
& \text { no change in } \\
& d G=V d P-S d T \\
& d A=-P d V-S d T
\end{aligned}
$$

\rightarrow consider a non-equilibrium / open system.
matter exchange between system and surrounding.
$n \neq$ constant.
Number of molecules/moles changes and hence extensive properties also changes.
$G=f(T, p)$ For closed, equilibrium system.
$G=f(T, P, n)$ - for open/non-equilibrium system.
where $n=$ no. of moles

$$
\begin{aligned}
& G=f(T, P, \underbrace{n_{1}, n_{2}, \ldots, n_{i}}_{n_{j}}) \\
& G=f\left(T, p, n_{1}, n_{2}, n_{j}\right\} \\
& d G=\left(\frac{\partial G}{\partial p}\right)_{T, n_{j}} d P+\left(\frac{\partial G}{\partial T}\right)_{p_{1} n_{j}} \cdot d T+\left(\frac{\partial G}{\partial n_{1}}\right)_{T, P_{, ~} n_{j} \neq 1} \cdot n_{i}+\left(\frac{\partial G}{\partial n_{2}}\right)_{T, P_{1} n_{j} \neq 2} \cdot n_{2} \\
& +\cdots \cdots+\left(\frac{\partial G}{\partial n_{i}}\right)_{p_{1, T, n_{j} \neq 1}} d n_{i} \\
& \therefore d G=V d p-S d T+\mu_{1} d n_{1}+\mu_{2} d n_{2}+\cdots \cdot+\mu_{i} d n_{i} \\
& {\left[\because\left(\frac{\partial G}{\partial n_{i}}\right)_{p_{1} T, n_{j} \neq i}=\bar{G}_{i} / \mu_{i}=\text { chemical potential }\right)} \\
& \therefore d G=V d p-S d T+\sum_{i} H_{i}^{i} d n_{i}^{3} \\
& \text { or } \\
& d G \equiv V d p-S d T+\sum_{i} \overline{G_{i}} d n_{i}
\end{aligned}
$$

similarly

$$
\left\{\begin{array}{l}
d U=T d s-p d v+\sum_{i} \sigma U_{i} \cdot d n_{1}^{i} \\
d \|=T d s+v d p+\sum_{i} \overline{H_{i}} \cdot d n_{i}^{i} \\
d A=-p d v-s d T+\sum_{i} \bar{A}_{i} d n_{i} \\
d G=v \cdot d p-s d T+\sum_{i} \overline{G_{i}} \cdot d n_{i}
\end{array}\right\} \rightarrow \begin{aligned}
& \text { Gibbs equation for } \\
& \text { open/non-equilidorium } \\
& \text { systems }
\end{aligned}
$$

\rightarrow For multiphase system

$$
\begin{aligned}
& d G=V d p-5 d T+\sum_{i}^{d} e_{i}^{d} d n_{i}^{d}+\sum_{i}^{\beta} e_{i}^{\beta} d n_{i}^{\beta} \\
& d G=V d p-S d T+\sum_{i}\left[\mu_{1}^{d} d n_{1}^{d}+l_{2}^{d} d n_{2}^{d}+l_{3}^{\beta} d n_{3}^{\beta}\right]
\end{aligned}
$$

$$
1,2 \mid 3
$$

$$
\alpha \beta
$$

Chemical potential and it "s importance.
elf-chemical potential is an

$$
\overline{G_{i}} / u_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{i} \neq 1}
$$ intensive property.

\longrightarrow The change in Gibbs's free energy per mole is called as. chemical potential.
at constant pressure (P) and temp (T).

$$
d G=\mu_{1} d n_{1}+\mu_{2} d n_{2}+\cdots \cdot+\mu_{1} d n_{i}
$$

on integrating the both sides.

$$
\left(\because \int d x=x\right)
$$

$$
G=l_{1} n_{1}+e_{2} n_{2}+\cdots \cdots+\mu_{1} n_{i}
$$

\rightarrow For pure substance of 1 mole.

$$
G=\mu_{1} n_{1} \quad \text { or } \quad(\because n-1)
$$

$\therefore G_{1 m}=1$ chemical potential for 1 mole.
but $\boldsymbol{l l}$ is intensive property
$\therefore\left\{\begin{array}{l}\text { For pure substance, chemical potenticels is equals. } \\ \text { to the molar free energy pe. } G_{r m}=4\end{array}\right\}$
\# Importance of -4:
\longrightarrow consider a component 'i' present in two region $d \& \beta$ and
 In amount of i is transferring from $\alpha \rightarrow \beta$.

$$
\begin{aligned}
& \text { Example } \\
& \text { G-changes }\} \text { chemical potential. } \\
& d G=V d p-S d T+\sum_{i} \mu_{i} d n_{i} \\
& d G=V d p-S d T+\mu_{i} d_{n} 1+\mu_{2} d n_{2}+\ldots .+e_{i} d n_{i}
\end{aligned}
$$

\rightarrow We know that

$$
d G=V d p-s d T+\sum_{i} u_{i} d n_{i}
$$

at constant $T \& p$

$$
d G=\sum_{i} l_{1} d n_{i}=\mu_{1} n_{1}+\mu_{2} n_{2}+\ldots .+\mu_{i} n_{i}
$$

\rightarrow change in free energy in d-region.

$$
\begin{aligned}
& d G=e l i_{d}^{d}\left(-d_{n}\right) \quad \text { no. of moles decreases. } \\
& d G=U_{i}^{\beta}\left(+d_{n}\right) \text { no. of moles increases. } \\
& d G=d G^{\alpha}+d G^{\beta} \\
& d G=u_{i}^{d}\left(-d_{n}\right)+e_{i}^{\beta}\left(t d_{n}\right) \quad\left\{\begin{array}{l}
\text { if } e_{i}^{d}>u_{i}^{\beta} \\
\text { then } d G=-v e \\
\text { the process is spontaneous }
\end{array}\right\}
\end{aligned}
$$

change in free energy in β-region.
\rightarrow The total free energy change. spontaneously.
〈iii) $l_{i}^{d}=l_{i}{ }^{\beta} \Longrightarrow$ system under equilibrium . $\left\{\begin{array}{l}\text { Where the chemical potential is more from } \\ \text { such place matter escapes spontaneous. So } \\ \text { chemical potential is a measure of } \\ \text { tenantry }\end{array}\right\}$

Example
below $0^{\circ} \mathrm{C}$
$\alpha \quad \beta$
water \longrightarrow ice \Longrightarrow spontaneously.

$$
\therefore \mu_{|N|}>\mu_{I}
$$

at room temp.

$$
\begin{aligned}
& { }_{i c e}^{q} \longrightarrow \text { waler } \Longrightarrow \text { spontaneously } \\
& \therefore \mu_{I}>l_{\omega}
\end{aligned}
$$

Que-1 The chemical potential li: of the i th component is defined as.
a. $\quad l_{i}=\left(\frac{\partial U}{\partial n_{i}}\right)_{T, p}$
b. $\quad l_{i}=\left(\frac{\partial H}{\partial n_{i}}\right)_{T . p}$
c) $l_{i}=\left(\frac{\Delta H_{i}}{\partial n_{i}}\right)_{T, p}$
d) $\quad \mu_{i}=\left(\frac{-1}{\partial n_{i}}\right) T, p$.
\Rightarrow chemical potential taif $\bar{G}_{i-}=\left(\frac{\partial G}{\partial n_{j}}\right) T_{,},,_{,} n_{j} \neq 1$
\therefore option (d) is the correct answer.
Que-2 Two phases d of β are in equilibrium. The correct relations observed among the variables T, P \& H are.
〈a〉 $p_{\alpha}=P_{\beta}, T_{\alpha} \neq T_{\beta}, \quad l_{\alpha}=l_{\beta}$
(b) $\quad p_{d} \neq p_{\beta}, \quad T_{d}=T_{\beta}, \quad e_{d}=e_{\beta}$
(c) $T_{d}=T_{\beta}, \quad P_{d}=P_{\beta}, \quad l_{d}=l_{\beta}$.
d) $T_{d}=T_{\beta}, \quad P_{d}=P_{\beta}, \quad l_{d} \neq \mu_{\beta}$.
\Rightarrow when system reaches the equilibrium.

$$
l_{\alpha}=l_{\beta} \quad, \quad p_{d}=P_{\beta}
$$

\rightarrow Gibbs's Helmholtz's equation at constant pressure.
(i) $\left(\frac{\partial \Delta G}{\partial T}\right)_{T}=-\Delta S \quad$ (ii) $\Delta G=\Delta H+T\left(\frac{\partial \Delta G}{\partial T}\right)_{P} \quad(i i i)-\frac{\Delta H}{T^{2}}=\frac{\partial}{\partial T}\left(\frac{\Delta G}{T}\right)_{P}$
\rightarrow Gibbs's Helmholtz's equation at constant volume
(i) $\left(\frac{\partial \Delta A}{\partial T}\right)_{v}=-\Delta S$
(ii) $\Delta A=\Delta U+T\left(\frac{\partial \Delta A}{\partial T}\right) v$
(iii) $-\frac{\Delta U}{T^{2}}=\frac{\partial}{\partial T}\left(\frac{\Delta A}{T}\right) V$.
\rightarrow Gibbs's equation for closed ar equilibrium system
(i) $d G=V d P-S d T$
(i) $d G=V d P-S d T+E \bar{G}_{i} d n_{i}$
(ii) $\cdot d A=-P d V-S d T$
(ii) $d A=-P d V-S d T+\Sigma \overline{A_{i}} d n_{i}$
(iii) $d H=V d P+T d S$
(iii) $d H=V d P+T d s+\sum H_{i} d n_{i}$
(iv) $d U=-P d V+T d S$.
(iv) $d u=-P d V+T d s+\sum J_{i} d n_{i}$
\longrightarrow Chemical potenticel.
\rightarrow For 1 mole pure substance.

$$
G_{4 m}=e_{1} ; \quad(n=1
$$

$$
\left(\frac{\partial \Delta G_{j}}{\partial n_{i}}\right)_{T, p, n_{j} \neq 1}=\bar{G}_{i} / l_{i}
$$

$\Rightarrow G$ at constant $P, \& T$

$$
G=\Sigma u_{i} n_{i}
$$

$\longrightarrow-\mathrm{H}_{i}$ / chemical potentii is a measure of escapir poller.
\# Material equilibrium.
\rightarrow The number of moles of each component in each phase of the system remains constant with time, then the system is said to be under material equilibrium.

\rightarrow It is of two types.

1) Chemical/ reaction equilibrium. - Equilibrium w.r. to conversion of 1 set of $A+B \rightleftharpoons C+D$ species to another set is At equilibrium rate of \quad rate of back. called chemical equilibrium forward reaction - ward reaction.
$\left\{\begin{array}{l}\text { Even at equilibrium, reaction takes place, but no net } \\ \text { reaction. This is called chemical/reaction equilibrium }\end{array}\right\}$
2) Physical equilibrium/phase equilibrium.

The equilibrium wirith respect to transfer of matter from one phase to another phase is called physical/phose equilibrium.

$$
\begin{aligned}
& \text { solid } \rightleftharpoons \text { liquid } \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$\left\{\begin{array}{l}\text { Even at equilibrium, transfer of matter takes place but mo } \\ \text { net transfer. }\end{array}\right\}$
\longrightarrow condition for material equilibrium.

$$
d G=V d p-s d T+\sum e_{i} d n_{i}
$$

at constant $T \& P$,

$$
\begin{aligned}
& \quad d G=\sum_{i} l_{i} d n_{i} \\
& \because d G=0
\end{aligned}
$$

Ia at equilibrium.

$$
\sum_{i} \mu_{i} d n_{i}=0
$$

condition for material equilibrium
\# Phase equilibrium - Clapeyron equation.
It gives the relation between $p \& T$. It is useful in the construction of phase diagrams. If is applicable to one component two phase system,
$\mathrm{H}_{2} \mathrm{O}$ (Ice) $\rightleftharpoons \mathrm{H}_{2} \mathrm{O}$ (heater) : 1 component, 2 phases.
\longrightarrow consider two phases A $\& B$ are in equilibrium at a given temp and pressure.

$$
\text { phase } A \rightleftharpoons \text { phase } B .
$$

At equilibrium.

$$
\begin{gather*}
d G=0 \\
G_{A}-G_{B}=0 \\
G_{A}=G_{B}
\end{gather*}
$$

$\longrightarrow \mathrm{Br}$ changing the temperature and pressure.

$$
\begin{aligned}
& T \longrightarrow T+d T \\
& P \longrightarrow P+d P
\end{aligned}
$$

then

$$
\begin{aligned}
& G_{A} \longrightarrow G_{A}+d G_{A} \\
& G_{B} \longrightarrow G_{B}+d G_{B} .
\end{aligned}
$$

At equilibrium.

$$
\begin{aligned}
& G_{A}+d G_{A}=G_{B}+d G_{B} \quad \text {-. from equation (i). } \\
& d G_{A}=d G_{B} . \\
& \text { but } d G=V d P-S d T \text {. } \\
& \therefore \quad V_{A} d P-S_{A} d T=X_{B} d P-S_{B} d T \\
& S_{B} d T-S_{A} d T=V_{B} d P-V_{A} d P \\
& d T\left(S_{B}-S_{A}\right)=d P\left(V_{B}-V_{A}\right) \\
& d T \cdot \Delta S=d P \cdot \Delta V \\
& \therefore \frac{d P}{d T}=\frac{\Delta S}{\Delta V} \\
& \text { - Clapeyron equation for any } A \text { phase } \\
& \text { equilibrium } \\
& s \rightarrow \ell . \quad \Delta s=\frac{\Delta_{\text {aus }} H}{T_{\text {fut }}} \\
& l \longrightarrow g \quad \Delta s=\frac{\Delta_{\text {hap }} H}{T_{b}}
\end{aligned}
$$

\# clausius - Clapeyron equation.
On applying Clapeyron equation to liquid - vapour equilibrium to get Clausius - Clapeyron equation.
at equililibrium \quad liquid \rightleftharpoons vapour.

$$
\Rightarrow \frac{d P}{d T}=\frac{\Delta_{\text {vape }} H}{T_{b}\left(v_{g}-V_{l}\right)}
$$

volume occupied $\quad V_{g}>v_{l}$. Hence v_{l} can be neglected.

$$
\frac{d P}{d T}=\frac{\Delta_{\operatorname{vap}} H}{T \cdot V_{g}}
$$

by using ideal gas equation $V_{g}=\frac{R T}{P_{g}}$ - for 1 mole.

$$
\begin{align*}
& \therefore \frac{d P}{d T} \equiv \frac{P_{g} \cdot \Delta_{\text {rap }} H}{R T^{2}} \\
& \therefore \frac{d P}{P_{g}}=\frac{\Delta_{\text {rap } H}}{R} \cdot \frac{d T}{T^{2}} \tag{1}
\end{align*}
$$

\rightarrow Nom integrated on both sides.

$$
\begin{aligned}
\int \frac{d P}{P} & =\int \frac{\Delta_{V} H}{R} \cdot \int \frac{d T}{T^{2}} \\
\ln P & =\frac{\Delta_{V} H}{R} \times-\frac{1}{T}+c \\
Y & =m \times c \\
\ln P & =-\frac{\Delta_{V} H}{R} \times \frac{1}{T}+c \\
\log P & =\frac{-\Delta_{V} H}{2.303 R} \times \frac{1}{T}+c .
\end{aligned}
$$

Clapeyron equation.

$$
\because \int \frac{d x}{x^{2}}=-\frac{1}{x}
$$

For exothermic $\Delta_{v} H=-v e$
for endothermic $\quad \Delta_{V} H=+v e$.

For exothermic reaction..

$$
\Delta H \equiv-y e .
$$

$$
\begin{aligned}
\Rightarrow \log P & =\left(-\frac{\Delta_{v} H}{2.303 R}\right) \times \frac{1}{T}+c . \\
Y & =m x+c . \\
\text { rap } & \longrightarrow \text { liquid. }
\end{aligned}
$$

For endothermic reaction.

$$
\begin{aligned}
\Delta H & =+v e . \\
\Rightarrow \log P & =\left(\frac{\Delta_{V} H}{2.303 R}\right)\left(-\frac{1}{T}\right)+c . \\
Y & =m^{\prime} x+c . \\
\text { liquid } & \longrightarrow \text { goes }
\end{aligned}
$$

$\longrightarrow P_{1} \longrightarrow P_{2}$ and $T_{1} \longrightarrow T_{2}$. and from Clausius - Clapeyron equation

$$
\begin{aligned}
& \int_{P_{1}}^{P_{2}} \frac{d P}{P}=\frac{\Delta_{V} H}{R} \int_{T_{1}}^{T_{2}} \frac{d T}{T_{2}} \\
& \ln \frac{P_{2}}{P_{1}}=\frac{\Delta_{v} H}{R}\left[-\frac{1}{T_{2}}+\frac{1}{T_{1}}\right] \\
& \ln \frac{P_{2}}{P_{7}}=\frac{\Delta_{v} H}{T_{2}}\left[\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right] \\
& \log \frac{P_{2}}{P_{1}}=\frac{\Delta_{V} H}{2.302 R}\left[\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right]
\end{aligned}
$$

- from equation (1).

Clausius - Clapeyron equation. within finite limit of $T \& P$ condition and is used to calculate $\Delta_{\text {rap. }}$ H
\# Some important formulae.
\rightarrow condition for material equilibrium. $\quad \longrightarrow s \rightarrow l: \Delta s=\frac{\Delta_{\text {fin }} H}{T_{\text {in }}}$

$$
\sum_{i} t_{i} d n_{i}=0
$$

$$
l \longrightarrow g: \Delta S=\frac{\Delta v a p H}{T_{b}}
$$

\rightarrow Clapeyron equation.
\longrightarrow Clausius - Clapeyron equation $\quad l \nRightarrow v \mathrm{eq}^{m}$

$$
\frac{d P}{d T}=\frac{\Delta S}{\Delta V}=\frac{\Delta H}{T \Delta V}
$$

$$
\frac{d P}{d T}=\frac{P g \cdot \Delta \text { vap } H}{R T^{2}}
$$

\rightarrow Differential form of Clausius.
\rightarrow exothermic reaction, $\Delta H=-v e$
clapeyron equation.

$$
\frac{d P}{P_{g}}=\frac{\Delta_{\text {rap }}}{R} \cdot \frac{d T}{T^{2}} .
$$

$$
\log P=\frac{-\Delta_{\text {rap }}}{2.303 R} \cdot\left(\frac{1}{T}\right)+c .
$$

$$
\Longrightarrow \text { gas gas } \longrightarrow \text { liquid. }
$$

\rightarrow Integral form of clausius.
Clapeyron equation.
\longrightarrow endothermic reaction. $\Delta H=+v e$.

$$
\operatorname{tog} P=\left(\frac{A_{\operatorname{vap}} H}{2.303 R}\right) \cdot\left(-\frac{1}{-}\right)+c .
$$

$\log P=\frac{\Lambda_{\text {rap }} H}{2 \cdot 303 R} \cdot-\left(\frac{1}{T}\right)+c$

Que-1 Sign of ΔG for the melting of ice is -xe at.

1) 265 K
2) 270 K
3) 271 K
4) 274 K
\Longrightarrow solid \rightleftharpoons liquid. |above 273 K reaction melting of ice is spontaneous, $\Delta G=-v_{e}$ at $0^{\circ} \mathrm{C}$ equilibrium below $0^{\circ} \mathrm{C}$ nonspontaneous above $0^{\circ} \mathrm{C} \quad$ spontaneous

Que-2 Which of the following thermodynamic properties must be associated with a reaction found to be spontaneous at high temp but not spontaneous at low temp.

i) $\Delta H<0, \Delta S<0$	viii $\Delta H>0, \Delta S>0$
ii) $\Delta H<0, \Delta S>0$	xiv> $\Delta H>0, \Delta s<0$.

\Longrightarrow For reaction to be spontaneous at High temp.

$$
\Delta G \equiv-v e
$$

at high temp., spontaneous reaction have

$$
\Delta A=t v_{e}, \Delta s=+v e .
$$

ie. $\Delta H>0$ \therefore option (4) is the correct answer.

$$
\Delta G=-v e
$$

ice \longrightarrow water $\Delta S=$＋vel
\therefore Option（iii）is the correct answer

Que－4 Combustion of octane takes place in an engine

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+\frac{25}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The sign of $\Delta H, \Delta s$ and ΔG are．
〈i〉 toe，＋ie，－be
Lii－be，＋we，－re

〈iii〉－ve，－xe，－re
（iv）＋ie，－be，＋ie．
\Longrightarrow For combustion reaction．

$$
\begin{aligned}
& \Delta s=+v e \\
& \Delta G=-v e \\
& \Delta H=-v e
\end{aligned}
$$

\therefore option（ii）is the correct answer．

Que－5 For an ideal gas，going from initial state x to final state 7 ．
The final state \mathbb{Z} can be reached by either of the two path． shown in figbure Which of the following is correct．

1）$\Delta S_{x \rightarrow z}=\Delta S_{x \rightarrow Y}+\Delta S_{\gamma \rightarrow r}$
2）$k_{x \rightarrow z}=W_{x \rightarrow y}+w_{y \rightarrow z}$
8）$W_{x \rightarrow Y \rightarrow z}=W_{x \rightarrow Y}$ ．
4）$W_{x \rightarrow Y \rightarrow z}=\Delta S_{x \rightarrow y}$
\Longrightarrow

Que－6 For a system of constant composition，the pressure is given by．
1）$-\left(\frac{\partial U}{\partial S}\right)_{V}$ ．
（2）$-\left(\frac{\partial U}{\partial V}\right)_{s}$

3）$\left(\frac{\partial U}{\partial S}\right)_{T}$
（4）$\left(\frac{\partial U}{\partial V}\right)_{T}$

Que－7 The correct thermodynamic relation among the following is
〈1）$\left(\frac{\partial U}{\partial v}\right)_{s}=-p$
LD）$\left(\frac{\partial H}{\partial V}\right)_{S}=-p$ ．
〈3〉 $\left(\frac{\partial G}{\partial V}\right)_{S}=-P$
（4）$\left(\frac{\partial A}{\partial V}\right)_{S}=-S$

$$
\Longrightarrow
$$

Que－ 8 Gibbs＇s－Helmholtz equation is expressed as．
〈1）$\left[\frac{\partial(\Delta G / T)}{\partial T}\right]_{V}=\frac{-\Delta E}{T^{2}} \quad\langle 2\rangle\left[\frac{\partial(\Delta G / T)}{\partial T}\right]_{p}=-\frac{\Delta H}{T^{2}}$
〈3〉 $\quad d G=V d p-s d T$
〈务〉 $d H=T d s+V d P$ ．
\Longrightarrow Dib＇s Helmholtz equation．

$$
\begin{gathered}
\left(\frac{\partial \Delta G}{\partial T}\right)_{P}=-s \text { or } \Delta G=\Delta H+T\left(\frac{\partial \Delta G}{\partial T}\right)_{P} \text { or }\left[\frac{\partial}{\partial T}\left(\frac{\Delta G}{T}\right)_{P}=\frac{-\Delta H}{T^{2}}\right. \\
\therefore \text { option (4) is the correct answer. }
\end{gathered}
$$

Que－g The chemical potential μ_{i} of ith component is defined as

$$
\text { 〈1) } u_{i}=\left(\frac{\partial U}{\partial n_{i}}\right)_{T_{1} p} \quad\langle 2\rangle \quad u_{i}=\left(\frac{\partial H}{\partial n_{i}}\right)_{T, p} .
$$

〈3〉 $\mu_{i}=\left(\frac{\partial A}{\partial n_{i}}\right)_{T, \rho}$
〈4〉 $\quad \mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, P}$.
\Longrightarrow

$$
\left(\frac{\partial G}{\partial n_{i}}\right)_{T, P, n_{j} \neq 1}=\bar{G}_{i} \text { or } \mu_{i} \quad(\text { chemical potential }) .
$$

\therefore option（4）is the correct answer．

Que－10．In an open system，which one of the following is an intensive property．
〈1〉 G
〈2〉 s
〈3〉 4
（4）V．
$\Rightarrow \mu_{1}=\frac{G}{n_{i}} \therefore e_{1}$ is intensive property \therefore option（3）is the correct anscues
Que－11 A vapour pressure of $E t_{2} \mathrm{O}$ is 100 mm at $270^{\circ} \mathrm{C}$ and 200 mm at $127^{\circ} \mathrm{C}$ ，the molar enthalpy of vaporization is
〈1） $1663.2{\mathrm{~J} . \mathrm{mol}^{-1}}^{-1}$
〈2） 1663.2 cal． mol^{-1}

Que－12 Standard Enthalpies of formation of $\mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{NH}$ and HI are 142.2
 stability mill be．

Que－13 For liquid－vapour equilibrium of a substance，$\frac{d P}{d \pi}$ at 1 bar and 400 K is 8×10^{-3} bar． K^{-1} ．The molar volume of vapor form
 The molar enthalpy of vaporization is
〈1〉 $1,640 \mathrm{~kJ}^{2} \mathrm{~mol}^{-1}$
〈2〉 $100{\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}}^{\text {L }}$
〈3〉 $80 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
〈4〉 $64 \mathrm{~kJ}^{2} \mathrm{~mol}^{-1}$
\# Condition for reaction equilibrium
reaction: $2 A \rightleftharpoons 3 B$
\rightarrow condition for material equilibrium.

In general.,

$$
d A+b B \rightleftharpoons c C+d D .
$$

Example (1)

$$
A+2 B \longrightarrow 4 C+3 D
$$

$$
-\mu_{A}-2 \mu_{B}+4 \mu_{C}+3 \mu_{D}=0
$$

\qquad therefore react "is under
then:

$$
A+2 B \rightleftharpoons 4 C+3 D .
$$

$$
\begin{aligned}
& -a l_{A}-b u_{B}+c l_{C}+d u_{D}=0 \quad \rightarrow \text { reaction is } \\
& \Longrightarrow \quad \sum_{i} \nu_{i} \mu_{i}=0 \\
& \text { under chemical } \\
& \text { equalitroium }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Zutidni }=0 . \\
& \mu_{1} d n_{1}+\mu_{2} d n_{2}+\ldots .+\mu_{1} d n_{i}=0 . \\
& \therefore \text { For } 2 A \rightleftharpoons 3 B \\
& \mu \mu_{A} d n_{A}+\mu l_{B} d n_{B}=0 \\
& \therefore \quad \mu_{A} \times\left(-\frac{2}{3} d n_{B}\right)+u_{B} d n_{B}=0 . \\
& \frac{1}{2}\left(-d n_{A}\right)=\frac{1}{3}\left(d n_{B}\right) \\
& \therefore \quad d n_{A}=-\frac{2}{3} d n_{B} . \\
& \therefore \quad-2+1_{A} d n_{B}+3+1_{B} d n_{B}=0 \\
& \therefore \quad d n_{B}\left(\quad-2 \mu_{A}+3 \mu_{B}\right)=0 \\
& \therefore \quad d n_{B} \neq 0 \text {; } \\
& \downarrow \\
& \left\{\begin{array}{l}
\because A \cdot B=0 \\
A \neq 0 \Longrightarrow B=0 \\
B \neq 0 \Longrightarrow A=0 .
\end{array}\right\} \\
& \left.-2 \mu_{A}+3 \mu_{B}=0\right] \text { under equilibrium } \\
& 3 A \rightleftharpoons 2 B . \quad 3 A \rightarrow 2 B \\
& -3 \mu_{A}+2 \mu_{B}=0 \text {-also in equilibrium. }
\end{aligned}
$$

$$
d G=V d \rho-s d T+i_{i} \quad \sum_{i} \mu_{i} d n_{i}
$$

\rightarrow At constant $T \&$ composition. $\quad d T=0 \quad d n_{i}=0$.

$$
\therefore \quad d G=V d P
$$

\rightarrow for one mole of an gas.

$$
\begin{align*}
d G_{m}=V_{m} d p \\
\therefore \quad U_{t}=\frac{R T}{P} d p \quad \because d G_{m}=d u \quad\left(G_{m}\right. \text { replaced bp eu). } \\
\quad V_{m}=\frac{R T}{P} \tag{1}
\end{align*}
$$

$\longrightarrow \quad P_{1} \longrightarrow P_{2} \quad \& \quad l_{1} \longrightarrow l_{2}$
Now integrating equation (1)

$$
\int_{u_{1}}^{t_{1}} d t_{1}=R T \int_{p_{1}}^{p_{2}} \frac{d p}{p}
$$

$$
\therefore\left(-\mu_{2}-\mu_{1}\right)=R T \ln \frac{P_{2}}{P_{1}}=R T \ln \frac{P_{2}}{P_{1}}=2.303 R T \log \frac{P_{2}}{P_{1}}
$$

Since initial state is considered as standard state.
$\therefore \mu_{1}=u_{1}^{\circ}=$ for cur substance $\longrightarrow \underset{\text { initial state }}{\downarrow}$
standard state.
$P_{1}=1 \mathrm{~atm}$, at and $\operatorname{temp}(T)=25^{\circ} \mathrm{c}$.
$\therefore \quad \mu_{2}-\mu_{e}^{\circ}=R T \ln \frac{P_{2}}{1}=R T \ln P_{2}$

$$
\mu_{f}=u^{\circ}+R T \ln P_{f}
$$

U_{f} - final chemical potential
$i l_{i}^{\circ}$ - standard chemical potential Pf $_{f}$-final pressure.
\rightarrow for mixture of ideal gases

$$
\begin{aligned}
& \mu_{1}=\mu_{1}^{\circ}+R T \ln P_{1} \\
& \mu_{2}=\mu_{2}^{0}+R T \ln P_{2}
\end{aligned}
$$

$$
\mu_{i}=\mu_{i}^{0}+R T l_{n} P_{i}
$$

value $P_{i} \Longrightarrow$ partial vapour pressure of $i^{\text {th }}$ ideal gas.
$\# \frac{\text { Relation between } \Delta G^{0} \& \text { equilibrium constant }(K)}{\Delta G=\Delta G^{\circ}+R T \ln K .}$
At equilibrium

$$
\begin{aligned}
& \Delta G=0 . \\
& \therefore \quad \Delta G^{\circ}+ R T \ln K=0 .
\end{aligned}
$$

$$
\left\{\begin{array}{c}
a A+b B \longrightarrow c C+d D \\
K=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{array}\right\}
$$

At equilibrium $\Delta G=0 . \quad\left\{\begin{array}{c}a A+b B \longrightarrow c C+d D . \\ K=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}\end{array}\right\}$

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K . \\
\Delta H^{\circ}-T \Delta s^{\circ} & =-R T \ln K . \\
\ln K & =\frac{-\Delta H^{\circ}}{R} \cdot \frac{1}{T}+\frac{\Delta s^{\circ}}{R} \Rightarrow Y=m x+c . \quad
\end{aligned}
$$

$$
\text { slope: } m=\frac{-\Delta H^{\circ}}{R} \quad \text { constant } c=\frac{\Delta s^{\circ}}{R} \Longrightarrow \text { intercept. }
$$

$$
\Delta G^{0}=-R T \ln K .
$$

$$
\ln K=\frac{-\Delta G^{\circ}}{R T}
$$

$$
\therefore K=e^{-\Delta G^{\circ} / R T} \Longrightarrow
$$

$$
\text { equilibrium constant, } k \rightarrow \text { depends }
$$ only on temperature

\# Van't -Hoff equation.
\Longrightarrow If shows the temperature dependence of K.

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K \\
\therefore \frac{\Delta G^{\circ}}{T} & =-R \ln K .
\end{aligned}
$$

$$
\begin{equation*}
\therefore\left\{\frac{\partial}{\partial T}\left(\frac{\Delta G}{T}\right)\right\}_{P}=-R\left(\frac{\partial}{\partial T} \ln K\right)_{P} \tag{1}
\end{equation*}
$$

But a/c Gibb's-Hemholtz equation.

$$
\left\{\frac{\partial}{\partial T}\left(\frac{\Delta G^{0}}{T}\right)\right\}_{p}=-\frac{\Delta H^{0}}{T^{2}} \longrightarrow(2) \longrightarrow \text { at standard condition }
$$

from equation (1) and equation (2).

$$
\begin{aligned}
+R\left(\frac{\partial}{\partial T} \ln k\right)_{P} & =+\frac{\Delta H^{\circ}}{T^{2}} \\
R\left(\frac{\partial}{\partial T} \ln k\right)_{p} & =\frac{\Delta H^{\circ}}{T^{2}}
\end{aligned}
$$

$\Rightarrow\left(\frac{\partial}{\partial T} \ln K\right)_{P}=\frac{\Delta H^{\circ}}{R T^{2}}$ \qquad for infinitesimally small change.

$$
\left(\frac{d}{d T} \ln k\right)_{P}=\frac{\Delta H^{\circ}}{R T^{2}}
$$

\qquad for large changes.
\longrightarrow Now

$$
\begin{aligned}
T_{1} & \longrightarrow T_{2}
\end{aligned} \quad \& K_{1} \longrightarrow K_{2} .
$$

$$
\frac{k_{2}}{k_{1}}
$$

taking integration on both side.

$$
\begin{aligned}
& \int_{K_{1}}^{K_{2}} d(\ln K)=\frac{\Delta H^{\circ}}{R} \int_{T_{1}}^{T_{2}} \frac{d T}{T^{2}} \\
& \ln K_{2}-\ln K_{1} \\
& \therefore \ln \frac{K_{2}}{K_{1}} \\
& \left.\therefore \frac{T_{1}-T_{2}}{T_{1} T_{2}}\right]
\end{aligned}
$$

from above equation.
\Longrightarrow For exothermic reaction. $\quad \Delta H^{\circ}=-v e \quad$ and $T \Rightarrow T_{1} \rightarrow T_{2}$

$$
\ln \frac{K_{2}}{K_{1}}=-v e
$$

\Longrightarrow for endothermic reaction $\quad \therefore \quad \Delta H^{\circ}=+v e \quad$ \& $\quad T \Longrightarrow T_{1} \longrightarrow T_{2}$.

$$
\begin{aligned}
& \ln \frac{K_{2}}{K_{1}} \\
& \qquad \begin{array}{l}
K_{2}>K_{1} \\
\end{array}\left\{\begin{array}{lll}
\text { for endothermic reaction } \\
\text { equilibrium constant } & K & \Uparrow
\end{array}\right\}
\end{aligned}
$$

Example K at $25^{\circ} \mathrm{C}=100$ units.
at $50^{\circ} \mathrm{C}=150$ units.
\& if $\Delta H^{c}=$ tue endothermic reaction

$$
\left.\begin{array}{l}
\Delta H^{\circ}=-v e \\
\Delta H^{\circ}=0
\end{array}\right\} \quad \text { not a endothermic reaction. }
$$

\Rightarrow For a reaction where equilibrium constant is independent of temperature.

$$
\begin{aligned}
& K \rightarrow T \\
& \Delta H^{\circ}=8 . \\
& \frac{d}{d T}(\ln K)=\frac{\Delta H^{\circ}}{R T^{2}} \\
& \Longrightarrow K=\text { constant } \quad K=0 \text {. } \\
& \therefore \quad \frac{\Delta H^{\circ}}{R T^{2}}=0 \\
& \Delta H^{\circ}=R T^{2} \times O \\
& \therefore \angle H^{\circ}=0
\end{aligned}
$$

Que \Longrightarrow For a spontaneous rector).
be.

$$
\begin{aligned}
& \text { i) ave, }>1,-v e \\
& \text { ii) -ven , <1, -ie } \\
& \text { iii) -vt }>1, \text { the. } \\
& \text { iv) -vt , }<1 \text {, ave. } \\
& \Delta G^{\circ}=-R T \ln K
\end{aligned}
$$

for spontaneous reaction
\therefore option (3) is the correct answer

$$
\begin{array}{r}
\Delta G^{0}=-v e \\
K=>1 \\
\Delta G^{\circ}=-n F F_{\text {cell }}^{0}
\end{array}
$$

\therefore for spontaneous reaction $E_{c e l l}^{\circ}=+y e$

Que \Rightarrow A chemical potential of component one, of A binary mixture is $l_{1}=l_{1}{ }^{\circ}+R T \ln P_{1}$, where P_{1} is the partial vapour pressure of the component in vapour phase A standard state el is i) independent of $T \& P$.
ii) depends on both $T \& P$
iii) depends on T only
iv) depends on p only.
$\Rightarrow \quad P=1 \mathrm{~atm}$ at any Temp. T.

$$
l l=l
$$

$\therefore U^{\circ}$ depends upon only on temperature in the standard state.

Que \Rightarrow The variation of equilibrium constant K of such a recuction n af the temperature T is $\ln K=3+\frac{2.0 \times 10^{4}}{T}$ given $R=8.3 \mathrm{~J}$. mol^{-1}

The value of $\Delta H^{\circ} \neq \Delta s^{\circ}$ are.
i) $166 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ \& $24.9 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
ii) $166 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ \& $249 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
$\frac{\Delta S^{\circ}}{R}=3.0$
iii) - $166 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ \& $249 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$

\Rightarrow

$$
\Delta G^{0}=-R T \ln K .
$$

$$
\Delta H^{\circ}-T \Delta s^{\circ}=-R T \ln K
$$

$$
\therefore \quad \ln K=-\frac{\Delta H^{\circ}}{R T}+\frac{\Delta s^{\circ}}{R}
$$

$$
\begin{aligned}
-\frac{\Delta H^{\circ}}{R t}=\frac{2.0 \times 10^{4}}{才} \quad \therefore \quad \Delta H^{\circ} & =-8.3 \times 2 \times 10^{4} \\
\Delta H^{\circ} & =-16.6 \times 10^{4} \\
\Delta H^{\circ} & =-166 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Que \Rightarrow For a closed system, the correct statement is
i) $d U=T d s-P d X$
ii) $d G=V d P+s d T$
iii) $d u=T d s+P d V$
iv> $d u=\psi d P-5 d T$.
$\Longrightarrow d U=T d S-P d V$ is the correct statement, for a closed system \therefore option (1) is the correct answer.

Que \rightarrow Identify the correct statement from the following
a) At the melting point, the chemical potential of substance in solid phase and in liquid phase are same.
b) At the boiling point, the chemical potential of substance in liquid phase and in gaseous phase are same
c) partial molar free energy is designated as chemical potential.

- i) a, b
ii) b, c
iii) a, c
$\langle i x\rangle a, b, c$,
$\Rightarrow \quad \Delta \bar{G}_{m, i}=\mu_{i}$
All statement are correct option (iv) is the correct answer

Que \rightarrow the equilibrium constant becomes in w．．．．．．．．．．．．．．．．．．．．．． from 400 K to 600 K ．What is ΔH° in $\mathrm{kJ} / \mathrm{mol}=$ ？ ．

$$
R=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} / \mathrm{mol}
$$

$$
\text { 〈i〉 } 23 \quad \text { 〈ii〉 } 0.016
$$

（iii） 0.000016
$\Longrightarrow \quad \log \frac{K_{2}}{K_{1}}=\frac{\Delta H^{\circ}}{2.3 R T^{2}}=\frac{\Delta H^{\circ}}{2.3 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$

$$
\therefore \quad \log \frac{10 K_{1}}{K_{1}}=\frac{\Delta H^{\circ}}{2.3 \times 8.3}\left[\frac{600-400}{24 \times 10^{4}}\right]
$$

$$
=\frac{\Delta H^{0}}{8.3 \times 2.3} \times \frac{200}{24 \times 10^{4}}
$$

$$
\Delta H^{0}=\frac{8.3 \times 2.3 \times 24 \times 10^{4}}{200}=\frac{458.16 \times 10^{-4}}{200}=2.29 \times 10^{4}
$$

the correct

$$
\therefore \Delta H^{\circ}=22.9 \times 10^{3} \approx 23 \times 10^{3} \approx 23 \mathrm{~kJ} / \mathrm{mol}
$$

answer

Que \longrightarrow Enthalpy is equal to $=$ ：

$$
\begin{aligned}
& \text { i) } T S+P V+\sum l_{i} n_{i} \\
& \text { 4) } T S+\sum \mu_{i} n_{i} \\
& \text { 3) } \sum \mu_{i} n_{i} \\
& \text { 4) } P V+\sum l_{i} n_{i}
\end{aligned}
$$

$$
\Rightarrow \quad d H=T d s+P d V+\Sigma \mu_{i} d n_{i}
$$

$$
\therefore H=T S+P V+\bar{L}-H_{i} n_{i}
$$

Hence，option（1）is the correct answer．

Que $\rightarrow 1$ mole of an ideal gas undergo a cyclic process ABCDA starting from point A through four reversible steps as shown in figure．The total work done in the process is．

$$
\begin{aligned}
& \text { 1) } R\left(T_{1}-T_{2}\right) \frac{V_{2}}{V_{1}} \\
& \text { 2) } R\left(T_{1}+T_{2}\right) \frac{V_{2}}{V_{1}} \\
& \text { 3) } R\left(T_{1}+T_{2}\right) \ln \frac{V_{2}}{V_{1}} \\
& \text { 4) } R\left(T_{2}-T_{1}\right) \ln \frac{V_{2}}{V_{1}} \\
& \Rightarrow \quad k=-R T \ln \frac{V_{f}}{V_{i}} \text { for } 1 \text { mole. } \\
& k=W_{A \rightarrow B}+k_{B \rightarrow C}+k_{C \rightarrow D}+k_{D \rightarrow A} \\
& =-R T_{1} \ln \frac{V_{2}}{V_{1}}+0+-R T_{2} \ln \frac{V_{1}}{V_{2}}+0 . \\
& =-R T_{1} \ln \frac{V_{2}}{V_{1}}+R T_{2} \ln \frac{V_{2}}{V_{1}} \\
& \text { option (4) is the correct } \\
& \text { answer. } \\
& k=R\left(T_{2}-T_{1}\right) \ln \frac{V_{2}}{V_{1}}
\end{aligned}
$$

\# Thermodynamics of open system. - partial molar properties..

For open system: - Number of moles (n) changes.

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
& \uparrow & & \\
1, & 2, & 3, & \cdots & i \\
+ & 1 & 1 & & \\
i & & & & \\
& & &
\end{array}\right| \\
& \therefore X=f(T, P) \quad \longrightarrow \text { for closed system. } \\
& \therefore x=f\left(T, P, n, n_{2}, n_{3}, \ldots . n_{i}\right) \longrightarrow \text { for open system. } \\
& d X=\left(\frac{\partial x}{\partial T}\right)_{P_{,} n_{j}}+\left(\frac{\partial x}{\partial p}\right)_{T_{1} n_{j}}+\left(\frac{\partial x}{\partial n_{1}}\right)_{T, P_{1} n_{j} \neq 1} d n_{1}+\left(\frac{\partial x}{\partial n_{2}}\right)_{T, P_{1} n_{j} \neq 1} d n_{2} \\
& \cdots \cdots+\left(\frac{\partial x}{\partial n_{i}}\right)_{T, p_{1} n_{j} \neq i} d n_{i} \\
& \therefore\left(\frac{\partial x}{\partial n_{i}}\right)_{T, p, n_{j} \neq 1}=\bar{X}_{i}=\text { partial molar properties }
\end{aligned}
$$

\therefore at constant temperature $T \&$ constant pressure P

$$
\begin{aligned}
d x & =\bar{x}_{1} d n_{1}+\bar{x}_{2} d n_{2}+\ldots \bar{x}_{i} d n_{i} \\
\therefore & x=\bar{x}_{1} n_{1}+\bar{x}_{2} n_{2}+\cdots+x_{i} n_{i}
\end{aligned}
$$

$$
\therefore \mid x=\sum n_{i}
$$

\therefore Hence extensive properties are $U, G, A, S, H \Rightarrow x$.

partial molar properties: change in extensive properties per mole is called partial molar properties (P.M.P). and these are intensive properties.
\longrightarrow partial molar entropy $\left(\bar{S}_{i}\right) \quad \rightarrow$ partial molar enthalpy $\left(\bar{H}_{i}\right)$

$$
\bar{S}_{i}=\left(\frac{\partial S}{\partial n_{i}}\right)_{T, p, n_{j} \neq 1}
$$

$$
S=\sum_{i} \overline{S_{i}} n_{i}
$$

$$
\overline{H_{i}}=\left(\frac{\partial H}{\partial n_{i}}\right)_{, p, n_{j} \neq 1}
$$

$$
H=\sum_{i} \bar{H}_{i} n_{i}^{*}
$$

partial molar properties are properties.
Example \longrightarrow partial molar volume
of water
is added
\therefore partial molar volume of water $\left(\bar{V}_{\mathrm{H}_{2} \mathrm{O}}^{*}\right)=18 \mathrm{ml}$ after adding

$\left(V_{m}^{*}, H_{2} \mathrm{O}\right)=18 \mathrm{ml}$. before adding. added $(18 \mathrm{ml})$
ethanol
$V_{i}($ ethanol) - 1000 ml .

$$
\frac{V_{f}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{HOH}\right)-1014 \mathrm{ml}}{\text { ange in volume }=14 \mathrm{ml} .}
$$

\therefore partial molar volume of water $\left(\bar{V}_{m}^{*}, \mathrm{H}_{2} \mathrm{O}\right)=14 \mathrm{ml}$ after adding

Some important formulae
\rightarrow condition for
reaction equilibrium.

$$
\begin{aligned}
& \sum_{i} \nu_{i} \mu_{i}=0 \\
& \nu_{i}= \text { stoichiometric coefficient }
\end{aligned}>\text { product (+we) }
$$

\rightarrow chemical potential of pure ideal gas.

$$
\mu=\mu^{\circ}+R T \ln P_{f}
$$

$$
\mu_{i}=l_{i}^{0}+R T \ln P_{i}
$$

l^{0} - standard chemical potential

- depends ont on $T \& P=1 \mathrm{~atm}$.
P_{i} - partial vapour pressure of $i^{\text {th }}$ ideal gas.
\rightarrow relation bets ΔG° \& equilibrium constant K.
i) $\Delta G^{0}=-R T \ln K=-2.303 R T \log k$.
(iii) $K=e$
$-\Delta G^{\circ} / R T$
ii) $\ln K=\frac{-\Delta H^{\circ}}{R} \times \frac{1}{T}+\frac{\Delta s^{\circ}}{R}$

$$
\text { <iv> } \quad \Delta G^{0}=-n F E_{\text {cell }}^{0}
$$

\rightarrow van't Hoff equation - temperature dependence of K.

$$
\begin{aligned}
& \ln \frac{K_{2}}{K_{1}}=\frac{\Delta H^{\circ}}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right] \quad \text { or } \quad \frac{d}{d T}(\ln K)=\frac{\Delta H^{\circ}}{R T^{2}} \\
& K_{2}>K_{1}-T \uparrow \quad K \uparrow \text { - endothermic } \\
& K_{2}<K_{1}-T \uparrow \quad K \downarrow \text { exothermic }
\end{aligned}
$$

\rightarrow partial molar properties - explains thermodynamics of open system

$$
\text { i) } x=\sum_{i} \overline{x_{i}} n_{i} \quad\langle i i\rangle \quad S=\sum \overline{S_{i}} n_{i} \quad\langle i i\rangle \quad G=\sum_{i} \bar{G}_{i} n_{i}=u_{i} n_{i}
$$

For partial molar volume. (P.M.V.)
al molar volume. (P.M.X.)
large entrant

$$
\text { of cater } \quad \begin{aligned}
& V_{i}=1000 \mathrm{ml} . \\
& \begin{array}{l}
V_{f}
\end{array}=1018 \mathrm{ml} \\
& \text { change in } \mathrm{NO}^{\mathrm{m}}=18 \mathrm{ml} .
\end{aligned}
$$

$$
\therefore \text { P.M.V of water in mater }\left(\bar{\nabla}_{H_{2} \mathrm{O}}^{*}\right)=18 \mathrm{ml} \text {. }
$$

$[$ ethyl alcotril	
V_{i}	$=1800 \mathrm{ml}$.
V_{f}	$=1014 \mathrm{ml}$

\longrightarrow due to H -bending intermolecular
interaction between $\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ so the packing get changed, with the change in size and shape.
partial molar volume indicated change in volume after addition or removal of 1 mole of water $\left(Y_{m}^{*}, H_{2} \mathrm{O}=18 \mathrm{ml}\right)$.
\longrightarrow For adding water to mater.

$$
\begin{aligned}
V_{m, H_{2} \mathrm{O}}^{*} & =\bar{V}_{\mathrm{H}_{2} \mathrm{O}}^{*} \\
S_{m}^{*}, \mathrm{H}_{2} \mathrm{O} & =\bar{S}_{\mathrm{H}_{2} \mathrm{O}}^{*} \\
H_{m}^{*}, \mathrm{H}_{2} \mathrm{O} & =\bar{H}_{\mathrm{H}_{2} \mathrm{O}}^{*} .
\end{aligned}
$$

$\longrightarrow 50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}+50 \mathrm{ml} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=95 \mathrm{ml}\left(\bar{\nabla}_{\mathrm{H}_{2} \mathrm{O}}^{*}\right)$-partial molar volume.
\rightarrow Note:
G.H,A, W,S,V - extensive properties - depends on T, P, n (no. of moles
partial $\bar{G}, \bar{H}, \bar{A}, \bar{W}, \bar{S}, \bar{V}$ - intensive properties - depends on T, P, composition but molar not of n (no. of moles)

change in volume $(\bar{V})=10 \mathrm{ml}$
change in volume $(\bar{V})=10 \mathrm{ml}$
(I)

no change in composition
no change in volume.

$\bar{V} \neq 10 \mathrm{ml}$.
(III)
-for this case. composition change occurs.

$$
\downarrow
$$

hence volume also changes (\bar{V}-partial molar volume change from I)
\# Variation of el with P.

$$
\begin{gathered}
\frac{\partial U}{\partial P}=\varepsilon \\
d G=V d P-S d T+\sum_{i} \mu_{i} d n_{i}
\end{gathered}
$$

at constant $T \&$ composition.

$$
\begin{aligned}
& d G=V \cdot d P \\
& \frac{d G}{d P}=V
\end{aligned}
$$

$$
\text { or }\left(\frac{\partial G}{\partial P}\right)_{T, n_{j}}=V \text {. }
$$

We know that

$$
\bar{G}_{i} / \mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, P_{1} n_{j} \neq 1}
$$

Applying $\frac{\partial}{\partial n_{i}}$ to both side.

$$
\left[\frac{\partial}{\partial n_{i}}\left(\frac{\partial G}{\partial P}\right)_{T, n_{j}}\right]_{T, p, n_{j} \neq 1}=\left(\frac{\partial V}{\partial n_{i}}\right)_{T, p, n_{j} \neq 1}
$$

$$
\left[\frac{\partial}{\partial P}\left(\frac{\partial G}{\partial n_{i}}\right)_{T, P_{1} n_{j} \neq 1}\right]_{T, n_{j}}=\overline{V_{i}}
$$

$$
\left(\frac{\partial u}{\partial P}\right)_{T n_{j}}=\bar{V}_{i}
$$

\# Variation of es urn i.

$$
\begin{gathered}
\frac{\partial U}{\partial T}=2 \\
d G=V d P-s d T+\sum_{i} e_{i} d n_{i}
\end{gathered}
$$

Applying $\frac{\partial}{\partial n_{i}}$ to both site.

$$
\left[\frac{\partial}{\partial n_{i}}\left(\frac{\partial G}{\partial T}\right)_{p, n_{j}}\right]_{p, v, n_{j} \neq 1}=-\left(\frac{\partial S}{\partial n_{i}}\right)_{p_{i}, v_{1}}
$$

at constant P \& composition.

$$
\begin{aligned}
& d G=-s d T \\
& \frac{d G}{d T}=-s \\
& \left(\frac{\partial G}{\partial T}\right)_{P_{1} n_{j}}=-s .
\end{aligned}
$$

$$
\left[\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial n_{i}}\right)_{F, v, n_{j} \neq 1}\right]_{p, v, n_{i}}=-\bar{S}_{i}
$$

We know that.

$$
\overline{G_{i}} / e_{i}=\left(\frac{\partial G}{\partial T}\right)_{p, v, n_{j} \neq i}
$$

\# Gibbs's - Dutem equation: relation between μ and composition.

$$
d G=V d P-S d T+\sum_{i} \mu_{i} d n_{i}
$$

at constant $T, \& P$.

$$
\begin{align*}
& d G=\sum_{i} e_{i} d n_{i} \tag{1}\\
& x=\sum_{i} \overline{X_{i}} n_{i} \\
& G=\sum_{i} \bar{G}_{i} \overline{n_{i}} / \sum_{i} \mu_{i} n_{i} \tag{2}
\end{align*}
$$

differentitating equation (i)

$$
\begin{align*}
d G & =d\left(\sum_{i} e_{i} n_{i}\right) \\
d G & \left.=\sum_{i} e_{i} d_{i}+\sum_{i} n_{i} d u_{i}\right) \tag{3}
\end{align*}
$$

from equation (1) \& (3).

$$
\sum_{i} e_{i} d n_{i}=\sum_{i} \mu_{i} d n_{i}+\sum_{i} n_{i} d u_{i}
$$

$$
\sum_{i} n_{i} d l_{i}=0
$$

or

$$
\begin{aligned}
& \sum \frac{n_{i}}{n_{1}+n_{2}+\ldots n_{i}} d-e_{i}=0 \\
& \sum_{i} x_{i} d e_{i}=0
\end{aligned}
$$

For any partial mortar properties $\left(\bar{X}_{i}\right)$

$$
\mid \sum_{\text {or }}^{\sum x_{i} d \overline{x_{i}}=0 \mid \quad x_{i} \text {-mole fraction of ith component'. }}
$$

$$
\sum_{i} n_{i} d \bar{x}_{i}=0
$$

significance of Giblb's - Duhem equation

$$
\begin{aligned}
& \begin{array}{lll}
A & & B \\
1 & + \\
l_{A} & & a_{B}
\end{array} \\
& \text { lib's Dretem equation. } \\
& \sum n_{i} d u_{i}=0 . \\
& n_{A} d e_{A}+n_{B} d e_{B}=0 . \\
& n_{A} d \mu_{A}=-n_{B} d \mu_{B} . \\
& \therefore d \mu_{A}=-\frac{n_{B}}{n_{A}} d e l_{B} .
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{A} \uparrow \\
& \mu_{B} \uparrow
\end{aligned}>\mu_{B} \downarrow 1
$$

\therefore chemical potential cant vary independently that means one component's chemical potential changes, chemical potentials of all other remaining components also changes.

Example \longrightarrow

$$
\frac{\left[\left.\begin{array}{l}
A: B
\end{array} \right\rvert\,\right.}{1: 1} \frac{|A| B \mid}{A, B}
$$

Not only composition of At changes
composition also changes.
mixing properties: difference bet actual properties $\&$ expected (unmixed) properties.

Example

$$
\begin{aligned}
& 50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}+50 \mathrm{ml} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& \text { expected (unmixed) volume }=100 \mathrm{ml} . \\
& \text { actual(observed) volume }=96 \mathrm{ml} . \\
& \text { mixing volume, } \Delta V_{\text {mix }}\left.=-4 \mathrm{ml}=V_{f}-V_{i}\right) .
\end{aligned}
$$

$$
1\rfloor+\lfloor 2\rfloor+
$$

no. of moles

$$
n_{1} n_{2}
$$

ni"

Polar volume
of pure component

$$
V_{m, 1}^{*} \quad V_{m, 2}^{*}
$$

$$
V_{m, 3}^{*}
$$

D
volume occupied by

$$
n_{1} \times V_{m,}^{*} \quad n_{2} \times V_{m, 2}^{*}
$$

$$
n_{i} \times V_{m, i}^{*}
$$

each component.
volume expected

$$
V^{*}=\underline{n_{1} V_{m, 1}^{*}+n_{2} V_{m, 2}^{*}+\ldots n_{1} V_{m, i}^{*}}
$$ on mixing.

$$
V^{*}=\sum_{i} n_{i} V_{m}^{*} i
$$

1) Actual volume
after mixing

$$
V=\sum_{i} n_{i} \bar{V}_{i}
$$

$$
\begin{aligned}
\left\{x=\sum n_{i} \bar{x}_{i}\right\}
\end{aligned} \quad \begin{aligned}
\Delta V_{\text {mix }} & =V-V^{*} \\
\Delta V_{m i x} & =\sum_{i} n_{i} \bar{V}_{i}-\sum_{i} n_{i} V_{m, i}^{*} \\
\therefore \Delta V_{m i x} & =\sum_{i} n_{i}\left(\overline{V_{i}}-X_{m, i}^{*}\right)
\end{aligned}
$$

* - indicates values of pure component
- (bar)-indicates actual value after mixing
similarly,

$$
\begin{aligned}
\Delta S_{\text {mix }} & =S-S^{*}=\sum_{i} n_{i}\left(\overline{S_{i}}-S_{m}^{*}, i\right) \\
\Delta H_{\text {mix }} & =H-H^{*}=\sum_{i} n_{i}\left(\overline{H_{i}}-S_{m}^{*}, i\right) \\
\Delta G_{\text {mix }} & =G-G^{*}=\sum_{i} n_{i}\left(\overline{G_{i}}-G_{m}^{*}, i\right)
\end{aligned}
$$

\# variation of $\Delta G_{\text {mix }}$ tuith $T \& P$ for ideal solution.

$$
\left[\frac{\partial\left(\Delta_{\text {mix }} G\right)}{\partial P}\right]_{T, n_{j}}=q \quad \&\left[\frac{\partial\left(\Delta_{\text {mix }} G\right)}{\partial T}\right]_{p_{1} n_{j}}=\varepsilon
$$

i)

$$
\begin{aligned}
{\left[\frac{\partial\left(\Delta_{\text {mix }} G\right)}{\partial P}\right]_{T, n_{j}} } & =\left[\frac{\partial}{\partial p} \sum n_{i}\left(u_{i}-u_{i}^{*}\right)\right]_{T, n_{j}} \\
& =\sum n_{i}\left[\left(\frac{\partial u_{i}}{\partial P}\right)_{T, n_{j}}-\left(\frac{\partial u_{i}^{*}}{\partial P}\right)_{T, n_{j}}\right] \\
& =\sum_{i} n_{i}\left(\overline{V_{i}}-\bar{V}_{i}^{*}\right)
\end{aligned}
$$

but $\bar{V}_{i}^{*}=V_{m}^{*}, i$

$$
\begin{aligned}
\therefore & {\left[\frac{\partial\left(\Delta_{\text {mix }} G\right)}{\partial P}\right]_{T_{1} n_{j}}=\sum_{i} n_{i}\left(\bar{V}_{i}=V_{m}^{*}, i\right) } \\
& {\left[\frac{\partial\left(\Delta_{\text {mix }} G\right)}{\partial P}\right]_{T_{1} n_{j}}=\Delta V_{\text {mix }} . }
\end{aligned}
$$

$$
\begin{aligned}
d G= & V d P-S d T+\sum_{i} \mu_{i} d n_{i} \\
& {\left[\frac{\partial\left(\Delta_{\text {mix }} G\right)}{\partial T}\right]_{P, n_{j}}=-\sum n_{i}\left(\overline{S_{i}}-S_{m, i}^{*}\right) } \\
& {\left[\frac{\partial\left(\Delta_{\text {mix }} G\right)}{\partial T}\right]_{P, n_{j}}=-\Delta_{\text {mix }}=}
\end{aligned}
$$

XY Ideal Solution *

$$
\begin{aligned}
& \operatorname{Liq} A+\operatorname{liq} B \longrightarrow \text { solution } \\
& \text { ideal solution - ? }
\end{aligned}
$$

\longrightarrow ideal solution condition.
\Rightarrow i) same intermolecular forces.

$$
A-A=B-B=A-B .
$$

ii) for same intermolecular forces, non-polarity \& polarity of mixing components must be same.
\Rightarrow ii size and shape of both $A \& B$ must be same so that we get same packing

$$
\begin{aligned}
& \text { Example: Benzene }+ \text { toulene (non-polar) - ideal solution) } \\
& \mathrm{C}_{2} \mathrm{H}_{s} I+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}(\text { polar }) \text { - ideal solution). }
\end{aligned}
$$

\# Thermodynamic properties of ideal solution.
\longrightarrow Vapour pressure: Raoult's law
\longrightarrow mixing properties.
\rightarrow partial molar properties
i) Vapour pressure - Raoult's law.

$$
\begin{array}{ll}
p_{i}=p_{i}^{*} x_{i} & p_{i}^{*}=\text { pressure of pure component i } \\
x_{i}=\text { mole fraction of } i \text { i' } \\
\frac{p_{i}}{p_{i}^{*}}=x_{i} & p_{i}=\text { partial vapour pressure of compen }
\end{array}
$$

$\left\{\right.$ The ration p_{i} to p_{i}^{*} is equal to x_{i} in it's $\}$ liquid phon.

$$
\begin{aligned}
& p_{i}=p_{i}^{*} x_{i} \\
& y=m x
\end{aligned}
$$

The solut which follows Raoult's law at all temp, pressure, compositions are called ideal solution.

Example
$A+B \longrightarrow$ ideal solution.

$$
\begin{aligned}
& P_{A}=P_{A}^{*} x_{A} \\
& P_{\text {sol }}=P_{A}+P_{B} \\
& P_{\text {sol }}=P_{A}^{*} x_{A}+P_{B}^{*} x_{B} . \\
& B .
\end{aligned}
$$

$$
\begin{array}{ll}
x_{B} & 1
\end{array}
$$

$$
0
$$

\longrightarrow chemical potential of component ii in mixture of ideal gases

$$
\mu_{i}=\mu_{i}^{\circ}+R T \ln P_{i}
$$

' i ' in ant solution (ideal /or non-ideal sol): $\mu_{i}=\mu_{i}^{*}+R T \ln \frac{P_{i}}{P_{i}^{*}}$
' i ' for ileal solution $\quad \mu_{i}=\mu_{i}^{*}+R T \ln x_{i}$
ii) Mixing properties of ideal solution.
$\rightarrow \Delta_{\text {mix }} G=\left(\sum_{i} n_{i}\left(\mu_{i}-\mu_{i}^{*}\right)\right.$
for ideal solution

$$
\begin{aligned}
& \mu_{i}=l_{i}^{*}+R T \ln x_{i} \\
& \mu_{i}-\mu_{i}^{*}=R T \ln x_{i} \\
& \therefore \quad \Delta_{\text {mix }} G=\sum_{i} n_{i}\left(R T \ln x_{i}\right) \\
& \text { \# } \\
& \text {-vt } \quad\left(\because x_{i}<1 \quad \therefore \quad \ln x=-v e\right) \\
& \text { d } \\
& \Delta_{\text {mix }} G=-v e \longrightarrow \text { spontaneous } \\
& \text { mixing. } \\
& \Delta_{\text {mix }} G=R T \sum_{i} n_{i} \quad \ln x_{i} \\
& =\text { oRT } \sum_{i} \frac{n_{i}}{N} \quad \ln x_{i} \\
& \left(N=n_{1}+n_{2}+\ldots+n_{i}\right)
\end{aligned}
$$

$$
\Delta_{\text {mix }} G=N R F \sum_{i} x_{i} \ln x_{i} \mid \longrightarrow \Delta_{\text {mix }} G=-v e
$$

$$
R T \sum_{i} n_{i} \ln x_{j}=\text { constant for ideal solution. }
$$

for ideal solution.

$$
\text { expected volume }=\text { actual volume. }
$$

$$
V^{*}
$$

Example $\quad \gamma_{6} \mathrm{H}_{6}+$ toulenc.
$50 \mathrm{ml} . \quad 50 \mathrm{ml}$

$$
\begin{aligned}
V^{*} & =100 \mathrm{ml} \\
V & =100 \mathrm{ml} \\
\therefore \quad \Delta_{\text {mix }} V & =0
\end{aligned}
$$

$\rightarrow \Delta_{\text {mix }}{ }^{5}$

$$
\begin{aligned}
& \left\{\frac{\partial\left(\Delta_{\theta i x} G\right)}{\partial t}\right\}_{p, n_{j}}=-\Delta_{\text {mix }} S \\
& -\Delta_{\text {mix }} S=\left[\frac{\partial}{\partial T}\left(R T \sum_{i} n_{i} \ln x_{i}\right)\right]_{p_{1} n_{j}}=\mathbb{R} \sum_{i} n_{i} \ln x_{i} \\
& \therefore \quad \Delta_{\text {mix }} S=-R \sum_{i} n_{i} \ln x_{i} \\
& \text { ave }\left(\because \ln x_{i}=- \text { vt because } x_{i}<1\right) \\
& \text { J. } \\
& \Delta_{\text {mix }} 5=+v e
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \Delta \operatorname{mix} X \\
& \left\{\frac{\partial\left(\Delta_{\text {mix }} G\right)}{\partial p}\right\} T, n_{j}=\Delta_{\text {mix }} V \\
& \therefore \quad \Delta_{\text {Varix }} V=\left\{\frac{\partial}{\partial P}\left[R T \sum_{i} n_{i} \ln x_{i}\right]\right\} \begin{array}{l}
n_{j}
\end{array} \\
& \therefore \quad \Lambda_{\text {mix }} V=0
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{\text {mix }} S=-R N \sum\left(\frac{n_{i}}{N} \ln x_{i}\right) \\
& \left.\Delta_{\text {mix }} S=-R N \sum x_{i} \ln x_{i}\right)
\end{aligned}
$$

$\longrightarrow \Delta_{\text {mix }} H$

$$
\begin{aligned}
\Delta G & =\Delta H-T \Delta S \\
\Rightarrow \Delta_{\text {mix }} G & =\Delta_{\text {mix }} H-T \Delta_{\text {mix }} S . \\
\therefore \Delta_{\text {mix }} H & =\cdots \Delta_{\text {mix }} G+T \Delta_{\text {mix }} S . \\
\Delta_{\text {mix }} H & =N R T \sum x_{i} \ln x_{i}-N R T E x_{i} \ln x_{i} \\
\Delta_{\text {mix }} H & =0
\end{aligned}
$$

III) partial molar properties.

$$
\begin{aligned}
& 2 \text { component - } \begin{array}{l}
\text { system }
\end{array} \text { miss - max. value - mole fraction of } \\
& \text { elect omponeht }=\frac{1}{2} \\
& 3-41-\Delta S_{\text {mix }}-4-11=\frac{1}{3} \\
& n-H-\Delta_{\text {mix }} S-H \quad-\quad 4=\frac{1}{6} \\
& \bar{G}_{i} / \mu_{1}, \quad \bar{V}_{i}, \quad \bar{S}_{i}, \quad \bar{H}_{i} \\
& \longrightarrow \quad U_{i}=U_{i} i^{*}+R T \ln x_{i} \\
& \longrightarrow \bar{V}_{i}=\left(\frac{\partial \mu_{i}}{\partial P}\right)_{T, n_{j}}=\left\{\frac{\partial}{\partial P}\left(\mu_{i}^{*}+R \operatorname{Tln} x_{i}\right)_{T, n_{j}}\right. \\
& =\left(\frac{\partial u_{i}^{*}}{\partial P}\right)_{T, n_{j}}+R T\left(\frac{\partial \ln x_{i}}{\partial P}\right)_{T i j} n_{i} \\
& =\bar{V}_{i}^{*}+0 \quad\left(\frac{\partial R T \ln x_{i}}{\partial P}\right)=\text { constant }=0 . \\
& \left.\bar{V}_{i}=\bar{V}_{m}^{*} i\right] \text { for ideal solution }
\end{aligned}
$$

$$
\begin{gathered}
\Delta_{\text {mix }} V=0 \\
\therefore \bar{V}_{i}=V_{m, i}^{*}
\end{gathered}
$$

$$
\bar{V}_{i}^{*}=V_{m, i}^{*}
$$

$$
\begin{aligned}
& \longrightarrow \quad \Delta_{\text {mix }} H=0 \\
& \therefore \quad H_{i}=H_{m, i}^{*}
\end{aligned}
$$

$\longrightarrow \quad, \bar{S}_{i}$

$$
\begin{aligned}
&\left(\frac{\partial u_{i}}{\partial T}\right)_{p, n_{j}}=-\bar{S}_{i} \\
&-\bar{S}_{i}=\left\{\frac{\partial}{\partial T}\left(u_{i}^{*}+R T \ln x_{i}\right)\right\}_{p, n_{j}} \\
&=\left(\frac{\partial}{\partial T}-u_{i}^{*}\right)_{p, n_{j}}+\left(\frac{\partial R T \ln x_{i}}{\partial T}\right)_{p, n j} \\
&=-S_{i}+R \ln x_{i}
\end{aligned}
$$

$$
\therefore\left[\begin{array}{l}
\bar{S}_{i}=\bar{S}_{\dot{m}, i}^{*}-R \ln x_{i} \\
\square
\end{array}\right.
$$

entropy after mixing $\left(\bar{S}_{i}\right)$ is maximum or increases than before" mixing ideal solution.

Ideally dilute solution: Henry lam..
Real sol :- doesn't follows Rout's law at all composition
Real sol under dilute condition - $99 \% A+1 \% B$
(solvent) (solute)

A has negligible interaction with

$$
\begin{array}{ll}
x_{A}=0.99 & x_{B}=0.01 . \\
x_{A} \longrightarrow 1 & x_{B} \rightarrow 0
\end{array}
$$ ideal behaviour.

A follow Raoult's lam.

$$
P_{A}=P_{A}^{*} \cdot x_{A} .
$$

B doesn't follow
Radult's law \downarrow

B follows Henry's lave

$$
P_{B}=K_{B} \cdot x_{B}\left(x_{B} \rightarrow 0\right.
$$

$P_{B}=K_{B} \cdot x_{B}\left(x_{B} \rightarrow 0\right)$
where K_{B} - Henry's constant
In a binary solution, if one component follows (solvent) Racults law \& another component (solute) follows Henry's lam are called ideally diluted solution

Rooult's law is special case Henry's law.
\longrightarrow Component whose mole fraction $(x \longrightarrow 0)$ follows Henry's lam and is called ideally diluted solution
\longrightarrow component whose mole fraction $(x \longrightarrow 1)$ follows Raoult's law.

Que \Rightarrow Entropy of a perfect gas is
i) Independent of v

- lis proportional of V
iii) proportional to $\ln V$.
iv) proportional to V^{2}
$\Longrightarrow \quad \Delta S=\quad n C_{V} \ln \frac{T_{2}}{T_{1}}+n R \cdot \ln \frac{V_{2}}{V}$
at canst $T \quad \Delta s=n R \ln \frac{V_{2}}{V_{1}} \quad \therefore$ Entropy depends on $\ln V$.
$\therefore x x x \Delta x \neq x \ln v \quad x+x$ Que \rightarrow A thermodynamic equation that relates the chemical potential to the composition of a mixture is known as
i) Gibbs's - Helmholtz eq.
ii) Joule - Thomson eq
iii) Debye Mucker eqn
iv) Gibbs - Duchem eq n

$$
\begin{aligned}
\sum n_{i} d u_{i}=0 & \text { Gibb's-Duhem equation } \\
n_{i} \text {-composition } & \\
\mu_{i}=\text { chemical potential } & \\
& \rightarrow \text { gives replication between potential }\left(\mu_{i}\right) \& \\
& \rightarrow \text { chemical composition }\left(n_{i}\right)
\end{aligned}
$$

Ques \Rightarrow Given the following

1. $x_{i} d u_{1}+x_{2} d r_{2}=0$.
2. $x_{1} d v_{1}+x_{2} d v_{2}=0$
for a binary liquid, the true statement is.
i) Both the relation are correct.
ii) (1) ᄂ
(2) x
iii) (1) x
(2) \checkmark
iv) both the relation are incorrect.
$\Rightarrow \quad \sum_{i} n_{i} d \overline{x_{i}}=0$. or $\quad \sum_{i} x_{i} d \bar{x}_{i}=0$
\therefore Both relations are true.

Que $\rightarrow 78$ grams of benzene is mixed with 92 grams of towline at 25 . Calculate $4 S_{\text {mix }}$ \& $\Delta G_{\text {mix }}$. (assume ideal behaviour)

$$
\begin{aligned}
& K_{A}=78 \text { gram } \\
& H_{B}=92 \text { gram. } \\
& T=25^{\circ} \mathrm{C}=298 \mathrm{~K} .
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow n_{c \cdot H_{c}} & =\frac{72}{72}=1 \mathrm{~mole} . \\
n_{\text {toulene }} & =\frac{92}{92}=1 \mathrm{~mole} .
\end{aligned}
$$

$$
\Delta_{\text {mix }} G=2.303 R T \sum_{i} n_{i} \log x_{i}
$$

$$
=2.303 \times 8.3 \times 298\left\{1 \cdot \log \frac{1}{x}+1 \cdot \log \frac{1}{2}\right\}
$$

$$
=5688.2\left\{\log \frac{1}{4}\right\}
$$

$$
=-5688.2 \times 2 \log 2
$$

$$
=-5,688.2 \times 2 \times 0.30
$$

$$
=-3412.92
$$

$$
=-3.4 \mathrm{~kJ} / \mathrm{mol}^{-1}
$$

Que \rightarrow At $27^{\circ} \mathrm{C}, 1$ mole of pure liquid A is mixed with 1 mole of pure liquid B to form an ideal solution．What is $\Delta_{\text {mix }} S$（in J． K^{-1} ）of the solution？〈i〉 $5.763 \quad$ 〈ii〉－1729．159 〈iii〉 1729.159 〈iv〉 0.0 ．
$\Rightarrow \quad A \longrightarrow 1$ mole $\quad B \longrightarrow 1$ mole $\quad \Delta_{\text {mix }} S=$ ？

$$
\begin{aligned}
\Delta_{\text {mix }} S=-R \sum_{i} n_{i} \ln x_{i} & =-2.3 \times 8.3\left(1 \times \log \frac{1}{2}+1 \times \log \frac{1}{2}\right)=-19 . \log \left(\log \frac{1}{4}\right) \\
& =-19.09(-\log 4)=+38.18 \times \log 2=38.18 \times 0.3010 \\
& =11.49 \mathrm{~J} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Que \rightarrow The mole fraction of CO_{2} in 1 litre aqueous solution is 1.423×10^{-5} ． The partial pressure of CO_{2} over the $50 \mathrm{l}^{\mathrm{n}}$ is $760 \mathrm{~mm} / \mathrm{Ag}$ ． What is the Henry＇s constant
（i） 5.34×10^{5}
（iii） 5.34×10^{7}
（ii） 5.34×10^{-1}
$\Longrightarrow \quad$ Henry＇s law $\Longrightarrow \quad p_{i}=k_{i} x_{i}$

$$
\begin{aligned}
k_{i}=\frac{P_{i}}{x_{i}}=\frac{760}{1.423 \times 10^{-5}} & =534.08 \times 10^{5} \\
& =5.34 \times 10^{7}
\end{aligned}
$$

\therefore option（iii）is the correct answer

Que $\rightarrow 1$ mole of liquid A is mixed with 1 mole of liquid B to form on ideal solution．The correct state of $\Delta_{\text {mix }} H, \Delta_{\text {mix }} V$ ， $\Delta_{\text {mix }} G, \Delta_{\text {mix }} S$ for this solution．
〈i〉 0 ，＋re，－re，－re
Lii） $0,0,-v e$ ，＋ie
（iii）the， 0 ，＋re，－re
〈iv＞o ，－re，－re，tyre．

$$
\begin{gathered}
\Delta_{\text {mix }} H=\Delta_{\text {mix }} V=0 . \\
\Delta_{\text {mix }} G=\operatorname{RT} \sum n_{i} \ln x_{i} \\
\Delta_{\text {mix }} G=-v_{e} \quad\left(\because x_{i}<1\right)
\end{gathered}
$$

$$
\Delta_{\text {mix }} S=-R \Sigma n_{i} \ln x_{i}
$$

$$
\Delta_{\text {mix }} S=+v_{e}\left(\because x_{i}<1\right)
$$

\therefore option（2）is the correct answer．
\rightarrow Henry's lace is not applicable to electrolytic solutions since. in these solutions even at high dilution interionic interactions are presents.

\# Solubility of Gases in liquids $\#$
solution of gases in liquid: follows Henry's law.
B) Consider the solubility of sparingly soluble gas in a given liquid
9) Since it's solubility is low (dilute sol) it follows Henry"s. lam sparingly soluble gas \Rightarrow solubility is extremely low in liquid

$$
\operatorname{tgus}_{\|}(x \longrightarrow 0)
$$

follow's Henry's law.
Afc Henry's lam

$$
\begin{aligned}
& p_{i}=K_{i} x_{i} \\
& x_{i}=\frac{p_{i}}{K_{i}} \\
& x_{i} \propto P_{i} \quad \text { or }\left[\frac{m, P}{m} \quad \text { or } \frac{m_{1}}{m_{2}}=\frac{P_{1}}{P_{2}}\right.
\end{aligned}
$$

$\left\{\begin{array}{l}\text { The amount of gas dissolve in a certain amount of liquid } \\ \text { at a given temperature is proportional to the pressure } \\ \text { of the gas. }\end{array}\right.$
\rightarrow Most of gases follows Henry's lam

1. The pressure is not too high i.e. low P.
2. The temperature is not too low i.e. hight.
3. There is no react betcueen gas and liquid.

Ex: solubility of $\mathrm{HCl}, \mathrm{NH}_{3}$ \& CO_{2} gases in water doesn't follow Henry's law but they follow Henry's law in benzene.

$$
\left.\begin{array}{ll}
\mathrm{HCl}+\mathrm{HOH} & \longrightarrow \mathrm{H}_{3}{ }^{+} \\
\mathrm{NH}_{3}+\mathrm{HOH} \longrightarrow \stackrel{N}{\mathrm{~N}}_{4}^{-}-\mathrm{O} \\
\mathrm{CO}_{2}+\mathrm{HOH} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}
\end{array}\right\} \text { solubility }
$$

$$
\uparrow_{\text {es }} \Longrightarrow \text { doesn't } 0
$$

nit obey Henry's
$\left.\begin{array}{l}\mathrm{HCl}+\mathrm{O} \longrightarrow \mathrm{R} . \\ \mathrm{NH}_{3}+\longrightarrow \mathrm{N} \cdot \mathrm{R} \cdot \\ \mathrm{CO}_{2}+\square \mathrm{N} \cdot \mathrm{R} .\end{array}\right\}$ No solubility \longrightarrow obeys Henry's lam.

Applications

\rightarrow Aquatic species are more confortable in cold $\mathrm{H}_{2} \mathrm{O}$ (T les \Longrightarrow solubility $\uparrow_{\text {es }}$) (more O_{2} dissolved) than warm water $\left(T T_{\mathrm{es}} \Longrightarrow\right.$ solubility tees) (less θ_{2} dissolved
\rightarrow In soft drink's or soda water to increase the solubility of CO_{2} gas, the bottles are sealed under very high pressure. (P pes \Rightarrow sol hes)
\rightarrow The tankers carried by scuba drivers filled with O_{2} is diluted with He. Since the solubility of He is less than N_{2}, in blood, to aroid bends
\rightarrow People living at high altitude contain less conc. of O_{2} in blood. So they are unable to think properly (situation is called anoxia)

Ion-Ideal Gases - Non ideal gases, are studied by Making the reference of ideal gases.
For ideal gas $l_{i}^{\text {ideal }}=l_{i}^{*}+R T \ln p_{i}$

$$
f_{i}=\text { fugacity } \text { or }
$$

\# Concept of fugacity (t) \& Tuganty coerminent 4ψ.
fugacity (f) \& fugacity coefficient $(\phi)=$ used to study non-ideal gases
non-ideal gases are studied by taking reference of ideal gases.
\longrightarrow for ideal gas

$$
\begin{align*}
& u_{i}^{I G}=u_{i}^{0}+R T \ln p_{i} \tag{1}\\
& u_{i}^{N I G}=u_{i}^{0}+R T \ln \left(f_{i}\right) \tag{2}
\end{align*}
$$

because
$l_{1}{ }^{\circ}$ depends only on
 temp. T.
4. $0_{i}^{\circ}, p=1 \mathrm{~atm}$ at any temp.
$f_{i} \Rightarrow$ fugacity of gas "i'
pressure only
pressure shown by non-ideal
\Longrightarrow pressure of non-ideal gas (NTG). gas.
\Longrightarrow corrected pressure.
$\{$ standard state $l l$ of a component "i" of non-ideal gas (NIG) is defined as chemical potential produced at $t_{i} \longrightarrow 1 \mathrm{~atm}$.
by subtractions (1) from (2)

$$
\begin{aligned}
& \mu_{i}^{N I G}-\mu_{i}^{I G}=R T\left(\ln F_{i}-\ln P_{i}\right) \\
& \mu_{i}^{N I G}-\mu_{i}^{I G}=R T \ln \frac{f_{i}}{P_{i}} \\
& \mu_{i}^{N E G}-\mu_{i}^{I G}=R T \ln \phi_{i}
\end{aligned} \quad \phi_{i}=\frac{\hat{P}_{i}}{P_{i}}-\text { fugacity coefficient } \quad l
$$

\rightarrow if $\phi_{i}=1$
$\mu_{i}^{N I G}=e_{i}^{I G} \quad$ given gas is ideal gas
\rightarrow if $\phi_{i} \neq 1$
$l_{i}{ }^{N I G} \neq l_{i}^{I G}$ given you is nom-ideal gas
$\phi_{i}>1$ tire deviation.
$\phi_{i}<1$-re deviation.
\longrightarrow At high P,
repulsive forces dominate over attractive forces.

$$
\begin{aligned}
& P_{N I G}>P_{I G} \\
& f>P \\
& \frac{f}{P}>1
\end{aligned}
$$

$$
\Phi>1 \quad \text { indicates } \frac{\text { repulsive forces }}{\downarrow}>\text { attractive }
$$

$$
\begin{aligned}
\text { (dominant) } & \downarrow \\
& \text { occurs at high }
\end{aligned}
$$

\longrightarrow at low P.
attractive forces dominate over repulsive forces.

$$
\begin{aligned}
& P_{N I G}<P_{I G} . \\
& f<P . \\
& \frac{f}{P}<1
\end{aligned}
$$

$$
\Phi<\| \text { indicates } \begin{gathered}
\underset{\downarrow}{\text { attractive forces }}>
\end{gathered}>\text { repulsive forces }
$$

\# Favourable condition for a gas to show ideal behaviour.
\longrightarrow high temp.
\longrightarrow low pressure.
\rightarrow at constant T.

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S \\
& \Delta G=-T \Delta S \quad \text { (isothermal condition) } \\
& \Delta G=-T \cdot n R \ln \frac{P_{1}}{P_{2}}=+n R T \ln \frac{P_{2}}{P_{1}}
\end{aligned}
$$ by non-ideal solution (NIS) with reference to ideal solution (IS).

$$
\left\{\begin{array}{c}
l_{i}^{I S}=l_{i}^{0}+R T \ln x_{i} \\
\left\{l_{i}^{\circ}=l_{1}^{*}(T, P) \text { or } u^{*}\right.
\end{array}\right\}
$$

activity of component 'i' of non-ideal solutii
a; - corrected mole fraction/ activity of component "i"
subtracting (1) from (2).

$$
\begin{aligned}
u_{i}^{N I S}-l_{i}^{I S} & =R T\left(\ln a_{i}-\ln x_{i}\right) . \\
& =R T \ln \left(\frac{a_{i}}{x_{i}}\right) \\
\operatorname{ll}_{i}^{N I S}-l_{i}^{I S} & =R T \ln x_{i} \\
Y_{i}=\frac{d_{i}}{x_{i}} & =\text { activity coefficient. }
\end{aligned}
$$

$\rightarrow \quad$ if $\quad \gamma_{i}=1$

$$
\operatorname{ll}_{i}^{\text {NIT }}=e_{i}^{I S} \quad \text { given solution is ideal solution (IS) }
$$

\rightarrow if $y_{i} \neq 1$

$$
e_{i}^{I S} \neq-l_{i}^{N I S}
$$

given solution is non-ideal solution (NIS).

$$
\left\{\begin{array}{l}
\text { activity o coctivity coefficient are the concept } \\
\text { applicable during study of Debye-Huckel equation } \\
\text { in electrochemistry. }
\end{array}\right\}
$$

Note:
$\mu_{i}^{I G}=\mu_{i}^{0}+R T \ln P_{i} \quad \phi=\frac{f_{i}}{P_{i}}=1$
$u_{i}^{\text {any mixture }}=u_{i}^{*}+R T \ln \left(p_{i} / p_{i}^{*}\right)$
$u_{i}^{I S}=\mu_{i}^{*}+R T \ln x_{i} \quad, \quad Y_{i}=\frac{d_{i}}{x_{i}}=1$
$\mu_{i}^{N I G}=\mu_{i}{ }^{\circ}+R T \ln f_{i} \quad \phi \neq 1$
$\mu_{i}^{\text {NIT }}=\mu_{i}^{\circ}+R T \ln a_{i} \quad \zeta_{i} \neq 1$.
\# Nos showing tee deviation from Raoult's law.
Example: Binary solution of $A \notin B$.
$\rightarrow \quad$ Nature of intermolecular forces.
i) $A-B$ interaction $<A-A$ or $B-B$ interaction.
\rightarrow Vapour $\longrightarrow P_{\text {NF }}>P_{\text {IS }}$

$\frac{\text { pressure }}{\text { C easy to evaporate }}$

due to weak $A-B$
$\therefore P_{\text {WIS }}>P_{A}^{*} x_{A}+P_{B}^{*} \cdot x_{B}$.
interaction
$\rightarrow \Delta_{\text {mix }} V=+$ re.
\rightarrow This solution is less stable. than ideal sol
$\longrightarrow \Delta_{\text {mix }} H=+$ ie (endothermic)
\# NTS showing -ie deviation from Raoult's Law.
\longrightarrow Nature of intermolecular force
$A-B$ interaction $>A-A$ or $B-B$ interaction

$$
\begin{aligned}
\longrightarrow \quad P_{N I S} & <P_{I S} \\
P_{\text {WIS }} & <P_{A}^{*} x_{A}+P_{B}^{*} \cdot x_{B}
\end{aligned}
$$

$\rightarrow \quad \Delta_{\text {mix }} V=-v e$
$\rightarrow \Delta_{\text {mix }} H=-v e \cdot($ exothermic $)$
\longrightarrow This NFS is more stable than
*) inermocnemisto
Hess's lame.
Heat of reaction doesn't depend on path followed but depends

$$
R \longrightarrow p
$$

POI

on initial reactants of final products. so heat of reaction is state function

Enthalpy of combustion. $\left(\Delta_{\text {com }} H\right)$.

- Amount of heat evolved during complete oxidation of A mole of a substance.
- it is aluays exothermic $\left(\Delta_{\text {com }} H^{0}=-v e\right)$.

Example

$$
\begin{gathered}
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+x \mathrm{~kJ} / \mathrm{mol}^{2} \\
\Delta_{\mathrm{com}} \mathrm{H}_{\left(\mathrm{CH}_{4}\right)}=-x \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

$$
\begin{aligned}
2 \mathrm{CH}_{4}+\mathrm{HO}_{2} & \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 x \mathrm{~kJ} / \mathrm{mol} \\
\Delta_{\text {com }} H & =-\frac{2 x}{2} \mathrm{~kJ} / \mathrm{mol}=-x \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$\left\{\begin{array}{c}\text { partial oxidation is not considered to give enthalpy of combustion. } \\ \text { but } \\ \text { complete oxidation is considered to give enthalpy of combustion }\end{array}\right\}$ \longrightarrow For a reaction

4std when enthe of combustion of

$$
R \longrightarrow p
$$ both reactor

$$
\Delta_{\text {ration }} H=\Sigma\left(\Delta_{\text {om }} H\right)_{R}-\sum\left(\Delta_{\text {con }} H\right)_{P}
$$ \& prods is given

but $R \longrightarrow P$.

$$
\Delta_{\text {reaction }} H^{\circ}=\left\{\sum \Delta_{f} H^{\circ}\right\} p-\left\{\sum \Delta_{q} H^{2}\right\} R
$$

used when
std. enthalpy of formation is given

\# Bond enthalpies

Bond dissociation energy $=-$ (enthalpy of formation of bond)
Example

$$
\begin{aligned}
& \mathrm{H}_{(g)}+\mathrm{Cl}_{(g)} \longrightarrow \mathrm{H}-\mathrm{Cl}(g)+x \mathrm{~kJ} / \mathrm{mol} \text { (exothermic). } \\
& \mathrm{HCl} \xrightarrow[0]{+x \mathrm{~kJ} / \mathrm{mol}} \mathrm{H}(\mathrm{~g})+\mathrm{Cl}_{(\mathrm{g})} \quad \text { (endothermic) } \\
& \text { Bond } \quad \triangle H(B \cdot D . E)=\text { the } \\
& \text { dissociation energy. }
\end{aligned}
$$

\longrightarrow for a reaction,

$$
R \longrightarrow P .
$$

Bond dissociation energy data is given.

$$
\Delta_{\text {react }} H=\Sigma\left(\Delta_{\text {B, }} \cdot H_{t}\right)_{R}-\Sigma\left(\Delta_{\text {q. }, H_{R}}\right)_{p}
$$

\# Enthalpy of Neutralization.

1 gram. acid
eq $\underset{\text { eq }}{\text { gram. bast }} \longrightarrow 5$ alt $+\mathrm{HOH}+x \mathrm{~kJ} / \mathrm{mol}$
Ex (1)

$$
\begin{aligned}
& \left\{n_{\text {gram.eq. }}=\frac{K 1}{\text { eq. } \omega t}=\frac{H}{\text { mol. } \omega t} \times \text { valency }=n_{\text {mole }} \times \text { valency }\right\} \\
& \mathbb{N}=M \times \text { valency }
\end{aligned}
$$

Example (2) $\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaCH} \longrightarrow \frac{1}{2} \mathrm{NCl}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+13.7:$ Kcal

$$
\begin{array}{ll}
(1 \text { 其 gm. eq. }) & (1 \mathrm{gm} \cdot \mathrm{eq}) \\
(1 / 2 \text { mole })
\end{array} \quad \Delta_{\text {neut }} H=-13.7 \mathrm{kcal} / \mathrm{mol} .
$$

general

Example (3)

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONN}^{\oplus}+\mathrm{HOH}+2.9 \mathrm{kcal}^{+} \mathrm{mol}^{-1}
$$

H. A

$$
\begin{equation*}
\Delta_{n} H=-12.3 \mathrm{kcol} \cdot \mathrm{~mol}^{-1} \tag{SIB}
\end{equation*}
$$

$\therefore 1.4 \mathrm{kcal}$ is required for complete ionization of $\mathrm{CH}_{3} \mathrm{COOH}$.

Kirchoff's equation.
effect of temperature on enthalpy of reaction.

$$
A \xrightarrow[T_{1}]{\Delta H_{i}} B \quad \text { at temp } T_{1}
$$

$$
A \quad \frac{\Delta H_{2}}{T_{2}} B \quad \text { at ten } T_{2}
$$

$$
\Delta C_{p}=\frac{\Delta H_{2}-\Delta H_{i}}{T_{2}-T_{1}}=C_{p}(\text { product })-C_{p}(\text { reactant })
$$

Lat constant F

$$
\Delta C_{V}=\frac{\Delta U_{2}-\Delta U_{1}}{T_{2}-T_{1}}=C_{x}(\text { product })-C_{v}(\text { reactant })
$$

_ at constant V.
real gas is expanded adiabatically from high $?$ experiment. pressure region to low pressure region

$$
\sqrt{1}
$$

Temp. T of gas \downarrow es (decreases) \rightarrow gas is cooled.
\longrightarrow at room temp.
C all gases \Longrightarrow shows same behaviour.
exception H_{2} \& $\mathrm{HE} \Rightarrow \operatorname{Temp}^{\uparrow} \Longrightarrow$ goes is heated H_{2} \& He
\longrightarrow Temp below which Joule - Thomson effect is observed is called inversion temp. $\left(T_{i}\right)$

$$
\begin{array}{ll}
T_{i}\left(\mathrm{H}_{2}\right)=-42{ }^{\circ} \mathrm{C} . & T_{i}-\text { inversion temp. } \\
T_{i}(\mathrm{He})=-248^{\circ} \mathrm{C} . &
\end{array}
$$

\longrightarrow for all other gases other than H_{2} \& He . inversion temperature is above room temp.
\longrightarrow isoenthalpic process $\quad H=$ constant
\longrightarrow Ideal gas similar experimental observation
no. change in inversion temperature.
\Longrightarrow J.T experiment.

$$
\begin{aligned}
& \text { below } T_{i} \text { - cooling of gas. occurs } \\
& \text { above } T_{i} \text { - heating of gas. occurs } \\
& \text { at } T_{i} \text { - neither heating or cooling of gas takes place. }
\end{aligned}
$$

\# Joule -Thomson coefficient (4)

$$
e_{H}=\left(\frac{\partial T}{\partial P}\right)_{H .} \quad \text { constant } H \Rightarrow \text { isoenthalpic process. }
$$

$$
\begin{aligned}
\text { i) if } \quad \mathrm{l} & =+v e, \\
& \rightarrow \text { cooling } \\
+v e & =\frac{d T}{-v e} \\
\text { ii) if } u & =-v e .
\end{aligned}
$$

$$
\longrightarrow \text { cooling of gas. }
$$

$$
\text { the }=\frac{d T}{-v e(p t)} \Longrightarrow d T=\text { toe } x \text {-ve }
$$

$$
\begin{aligned}
d T & =-v e \\
& \therefore \text { cooling of gas occurs }
\end{aligned}
$$

$$
\begin{aligned}
-v e=\frac{d T}{-v e(P L)} \Rightarrow & d T=-v c \times-v e \\
& \frac{d T=+v e}{C}
\end{aligned}
$$

iii) It $-4=0$

$$
\Longrightarrow \quad d T=0 \text { neither heating nor cooling }
$$

Que \rightarrow The B.D.E. of gaseous $\mathrm{Hz}_{2}, \mathrm{Cl}_{2} \& \mathrm{HCl}$ are 104,58 \& 103 kcal mall respectively. Calculate $A_{f} H$ of HCl .

$$
\begin{aligned}
& \Rightarrow \quad \Delta H_{H-H}=104 \mathrm{kcal} \cdot \mathrm{~mol}^{-1} \\
& \Delta H_{\mathrm{Cl}_{-\mathrm{Cl}}}=58 \mathrm{kcal} \cdot \mathrm{~mol}^{-1} \\
& \Delta H_{\mathrm{H}-\mathrm{Cl}}=103 \mathrm{kcal} \cdot \mathrm{~mol}^{-1} . \\
& \Delta_{f} H_{A-C 1}=? \text {. } \\
& \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HCl}(\mathrm{~g}) \quad, \quad \Delta_{f} \mathrm{H}(\mathrm{HCl}) \text {. } \\
& \Delta_{f} H(H C I)=\Sigma(\text { BD. } 1)_{R}-\Sigma(\text { B.D.E })_{p} \\
& =\left(\frac{1}{2} \Delta H_{H-H}+\frac{1}{2} \Delta H_{C-C l}\right)-\left(\Delta H_{H C I}\right) \\
& =\left(\frac{1}{2} \times 104+\frac{1}{2} \times 58\right)-103 \\
& =52+29-103 \\
& =-22 \mathrm{kcal} / \mathrm{mol} \text {. }
\end{aligned}
$$

Que \rightarrow The $\Delta_{\text {com }} H^{\circ}$ at $25^{\circ} \mathrm{C}$ of $H_{2}, C_{6} H_{18}$ and $C_{6} H_{12}$ are $-241,-3800+-3920{\mathrm{~kJ} . \mathrm{mol}^{-1} \text { respectively. Calculate that of }}^{\text {2 }}$ hydrogenation of cydohexene $\left(\delta_{8} H_{10}\right)$

$$
\Longrightarrow \quad \begin{aligned}
& \Delta_{c} H^{\circ}\left(H_{1}\right)=-241 \cdot \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
& \Delta_{c} H^{\circ}\left(c_{6} H_{10}\right)=-3800 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
& \Delta_{C} H^{\circ}\left(c_{6} H_{12}\right)=-3920 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} .
$$

$$
\begin{aligned}
\Delta H^{\circ} & =\Sigma\left(\Delta_{c} H^{\circ}\right)_{R}-\Sigma\left(\Delta_{c} H^{\circ}\right)_{p} \\
& =\{-3800+(-241)\}-\{-3920\} \\
& =-4041+3920 \\
& =-121 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Que $\rightarrow A_{f} H^{\circ}$ of ethane, CO_{2} and water are -21.1, -94.1\&-68.3 kcal. mol'- respectively. Calculate $\Delta_{C} H^{\circ}\left(C_{2} H_{6}\right)$

$$
\begin{aligned}
\Longrightarrow \Delta_{f} H^{\circ}\left(E_{2} H_{6}\right) & =-21.1 \mathrm{kcal} \cdot \mathrm{~mol}^{-1} \\
\Delta_{f} H^{\circ}\left(\mathrm{CO}_{2}\right) & =-94.1 \mathrm{k} \cdot \mathrm{cal} \cdot \mathrm{~mol}^{-1} \\
\Delta_{f} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right) & =-68.3 \mathrm{kcal} \cdot \mathrm{~mol} . \\
\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} & \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{C} H^{0}\left(C_{2} H_{6}\right) & =\sum\left(\Delta_{f} H^{\circ}\right)_{P}-\sum\left(\Delta_{f} H^{\circ}\right)_{R} \\
& =\{2 \times(-94.1)+3 \times(-68.3)\}-\{-21.1+0\} \\
& =-188.2-214.9+21.1 \\
& =-403.1-21.1 \\
& =-372.0 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

Que \rightarrow A hypothetical reaction proceeds via following steps.

$$
\begin{array}{ll}
A \longrightarrow 2 B \\
A \longrightarrow C & \Delta H
\end{array} \begin{aligned}
& \text { A } \longrightarrow q_{1} \\
& C \longrightarrow D
\end{aligned}
$$

\qquad (2)

The heat of reaction is
〈i〉 $\quad q_{1}-q_{0}+2 q_{3} \quad$ ai $\rangle \quad q_{1}+q_{n}+2 q_{2}$

